27。As,ontheonehand,itwereabsurdtogetridofobysaying,Letmecontradictmyself;letmesubvertmyownhypothesis;letmetakeitforgrantedthatthereisnoincrement,atthesametimethatIretainaquantitywhichIcouldneverhavegotatbutbyassuminganincrement:so,ontheotherhand,itwouldbeequallywrongtoimaginethatinageometricaldemonstrationwemaybeallowedtoadmitanyerror,thougheversosmall,orthatitispossible,inthenatureofthings,anaccurateconclusionshouldbederivedfrominaccurateprinciples。Thereforeocannotbethrownoutasaninfinitesimal,orupontheprinciplethatinfinitesimalsmaybesafelyneglected;butonlybecauseitisdestroyedbyanequalquantitywithanegativesign,whenceo-poisequaltonothing。Andasitisillegitimatetoreduceanequation,bysubductingfromonesideaquantitywhenitisnottobedestroyed,orwhenanequalquantityisnotsubductedfromtheothersideoftheequation:soitmustbeallowedaverylogicalandjustmethodofarguingtoconcludethatiffromequalseithernothingorequalquantitiesaresubductedtheyshallstillremainequal。Andthisisatruereasonwhynoerrorisatlastproducedbytherejectingofo。Whichthereforemustnotbeascribedtothedoctrineofdifferences,orinfinitesimals,orevanescentquantities,ormomentums,orfluxions。
28。Supposethecasetobegeneral,andthatisequaltotheareaABCwhencebythemethodoffluxionstheordinateisfound,whichweadmitfortrue,andshallinquirehowitisarrivedat。Nowifwearecontenttocomeattheconclusioninasummaryway,bysupposingthattheratioofthefluxionsofxandisfound[Sect。13。]tobe1and,andthattheordinateoftheareaisconsideredasitsfluxion,weshallnotsoclearlyseeourway,orperceivehowthetruthcomesout,thatmethodaswehaveshewedbeforebeingobscureandillogical。Butifwefairlydelineatetheareaanditsincrement,anddividethelatterintotwopartsBCFDandCFH,[Seethefigureinsect。26。]andproceedregularlybyequationsbetweenthealgebraicalandgeometricalquantities,thereasonofthethingwillplainlyappear。ForasisequaltotheareaABC,soistheincrementofequaltotheincrementofthearea,i。e。toBDHC;thatistosayAndonlythefirstmembersoneachsideoftheequationbeingretained,=BDFC:anddividingbothsidesbyoorBD,weshallget=BC。AdmittingthereforethatthecurvilinearspaceCFHisequaltotherejectaneousquantityandthatwhenthisisrejectedononeside,thatisrejectedontheother,thereasoningbecomesjustandtheconclusiontrue。AnditisallonewhatevermagnitudeyouallowtoBD,whetherthatofaninfinitesimaldifferenceorafiniteincrementeversogreat。Itisthereforeplainthatthesupposingtherejectaneousalgebraicalquantitytobeaninfinitelysmallorevanescentquantity,andthereforetobeneglected,musthaveproducedanerror,haditnotbeenforthecurvilinearspacesbeingequalthereto,andatthesametimesubductedfromtheotherpartorsideoftheequation,agreeablytotheaxiom,Iffromequalsyousubductequals,theremainderswillbeequal。Forthosequantitieswhichbytheanalystsaresaidtobeneglected,ormadetovanish,areinrealitysubducted。Ifthereforetheconclusionbetrue,itisabsolutelynecessarythatthefinitespaceCFHbeequaltotheremainderoftheincrementexpressedbyequal,Isay,tothefiniteremainderofafiniteincrement。
29。Therefore,bethepowerwhatyouplease,therewillariseononesideanalgebraicalexpression,ontheotherageometricalquantity,eachofwhichnaturallydividesitselfintothreemembers。Thealgebraicalorfluxionaryexpression,intoonewhichincludesneithertheexpressionoftheincrementoftheabscissanorofanypowerthereof;anotherwhichincludestheexpressionoftheincrementitself;andthethirdincludingtheexpressionofthepowersoftheincrement。Thegeometricalquantityalsoorwholeincreasedareaconsistsofthreepartsormembers,thefirstofwhichisthegivenarea;thesecondarectangleundertheordinateandtheincrementoftheabscissa;thethirdacurvilinearspace。And,comparingthehomologousorcorrespondentmembersonbothsides,wefindthatasthefirstmemberoftheexpressionistheexpressionofthegivenarea,sothesecondmemberoftheexpressionwillexpresstherectangleorsecondmemberofthegeometricalquantity,andthethird,containingthepowersoftheincrement,willexpressthecurvilinearspace,orthirdmemberofthegeometricalquantity。Thishintmayperhapsbefurtherextended,andappliedtogoodpurpose,bythosewhohaveleisureandcuriosityforsuchmatters。TheuseImakeofitistoshew,thattheanalysiscannotobtaininaugmentsordifferences,butitmustalsoobtaininfinitequantities,betheyeversogreat,aswasbeforeobserved。
30。Itseemstherefore,uponthewhole,thatwemaysafelypronouncetheconclusioncannotberight,ifinordertheretoanyquantitybemadetovanish,orbeneglected,exceptthateitheroneerrorisredressedbyanother;orthat,secondly,onthesamesideofanequationequalquantitiesaredestroyedbycontrarysigns,sothatthequantitywemeantorejectisfirstannihilated;or,lastly,thatfromoppositesidesequalquantitiesaresubducted。Andthereforetogetridofquantitiesbythereceivedprinciplesoffluxionsorofdifferencesisneithergoodgeometrynorgoodlogic。Whentheaugmentsvanish,thevelocitiesalsovanish。Thevelocitiesorfluxionsaresaidtobeprimoandultimo,astheaugmentsnascentandevanescent。Takethereforetheratiooftheevanescentquantities,itisthesamewiththatofthefluxions。Itwillthereforeanswerallintentsaswell。Whythenarefluxionsintroduced?Isitnottoshunorrathertopalliatetheuseofquantitiesinfinitelysmall?Butwehavenonotionwherebytoconceiveandmeasurevariousdegreesofvelocitybesidesspaceandtime;or,whenthetimesaregiven,besidesspacealone。Wehaveevennonotionofvelocityprescindedfromtimeandspace。Whenthereforeapointissupposedtomoveingiventimes,wehavenonotionofgreaterorlesservelocities,orofproportionsbetweenvelocities,butonlyoflongerandshorterlines,andofproportionsbetweensuchlinesgeneratedinequalpartsoftime。
31。Apointmaybethelimitofaline:alinemaybethelimitofasurface:amomentmayterminatetime。Buthowcanweconceiveavelocitybythehelpofsuchlimits?Itnecessarilyimpliesbothtimeandspace,andcannotbeconceivedwithoutthem。Andifthevelocitiesofnascentandevanescentquantities,i。e。abstractedfromtimeandspace,maynotbecomprehended,howcanwecomprehendanddemonstratetheirproportions;orconsidertheirrationesprimaeandultimae?
For,toconsidertheproportionorratioofthingsimpliesthatsuchthingshavemagnitude;thatsuchtheirmagnitudesmaybemeasured,andtheirrelationstoeachotherknown。But,asthereisnomeasureofvelocityexcepttimeandspace,theproportionofvelocitiesbeingonlycompoundedofthedirectproportionofthespaces,andthereciprocalproportionofthetimes;dothitnotfollowthattotalkofinvestigating,obtaining,andconsideringtheproportionsofvelocities,exclusivelyoftimeandspace,istotalkunintelligibly?
32。Butyouwillsaythat,intheuseandapplicationoffluxions,mendonotoverstraintheirfacultiestoapreciseconceptionoftheabove-mentionedvelocities,increments,infinitesimals,oranyothersuch-likeideasofanaturesonice,subtile,andevanescent。Andthereforeyouwillperhapsmaintainthatproblemsmaybesolvedwithoutthoseinconceivablesuppositions;andthat,consequently,thedoctrineoffluxions,astothepracticalpart,standsclearofallsuchdifficulties。Ianswerthatifintheuseorapplicationofthismethodthosedifficultandobscurepointsarenotattendedto,theyareneverthelesssupposed。Theyarethefoundationsonwhichthemodernsbuild,theprinciplesonwhichtheyproceed,insolvingproblemsanddiscoveringtheorems。Itiswiththemethodoffluxionsaswithallothermethods,whichpresupposetheirrespectiveprinciplesandaregroundedthereon;althoughtherulesmaybepractisedbymenwhoneitherattendto,norperhapsknowtheprinciples。Inlikemanner,therefore,asasailormaypracticallyapplycertainrulesderivedfromastronomyandgeometry,theprincipleswhereofhedothnotunderstand;andasanyordinarymanmaysolvediversnumericalquestions,bythevulgarrulesandoperationsofarithmetic,whichheperformsandapplieswithoutknowingthereasonsofthem:evensoitcannotbedeniedthatyoumayapplytherulesofthefluxionarymethod:youmaycompareandreduceparticularcasestogeneralforms:youmayoperateandcomputeandsolveproblemsthereby,notonlywithoutanactualattentionto,oranactualknowledgeof,thegroundsofthatmethod,andtheprincipleswhereonitdepends,andwhenceitisdeduced,butevenwithouthavingeverconsideredorcomprehendedthem。
33。Butthenitmustberememberedthatinsuchcase,althoughyoumaypassforanartist,computist,oranalyst,yetyoumaynotbejustlyesteemedamanofscienceanddemonstration。Norshouldanyman,invirtueofbeingconversantinsuchobscureanalytics,imaginehisrationalfacultiestobemoreimprovedthanthoseofothermenwhichhavebeenexercisedinadifferentmannerandondifferentsubjects;muchlesserecthimselfintoajudgeandanoracleconcerningmattersthathavenosortofconnexionwithordependenceonthosespecies,symbols,orsigns,inthemanagementwhereofheissoconversantandexpert。Asyou,whoareaskilfulcomputistoranalyst,maynotthereforebedeemedskilfulinanatomy;orviceversa,asamanwhocandissectwithartmay,nevertheless,beignorantinyourartofcomputing:evensoyoumayboth,notwithstandingyourpeculiarskillinyourrespectivearts,bealikeunqualifiedtodecideuponlogic,ormetaphysics,orethics,orreligion。Andthiswouldbetrue,evenadmittingthatyouunderstoodyourownprinciplesandcoulddemonstratethem。
34。Ifitissaidthatfluxionsmaybeexpoundedorexpressedbyfinitelinesproportionaltothem;whichfinitelines,astheymaybedistinctlyconceivedandknownandreasonedupon,sotheymaybesubstitutedforthefluxions,andtheirmutualrelationsorproportionsbeconsideredastheproportionsoffluxions-bywhichmeansthedoctrinebecomesclearanduseful。Ianswerthatif,inordertoarriveatthesefinitelinesproportionaltothefluxions,therebecertainstepsmadeuseofwhichareobscureandinconceivable,bethosefinitelinesthemselveseversoclearlyconceived,itmustneverthelessbeacknowledgedthatyourproceedingisnotclearnoryourmethodscientific。Forinstance,itissupposedthatABbeingtheabscissa,BCtheordinate,andVCHatangentofthecurveAC,BborCEtheincrementoftheabscissa,Ectheincrementoftheordinate,whichproducedmeetsVHinthepointTandCctheincrementofthecurve。TherightlineCcbeingproducedtoK,thereareformedthreesmalltriangles,therectilinearCEc,themixtilinearCEc,andtherectilineartriangleCET。Itisevidentthatthesethreetrianglesaredifferentfromeachother,therectilinearCEcbeinglessthanthemixtilinearCEc,whosesidesarethethreeincrementsabovementioned,andthisstilllessthanthetriangleCET。ItissupposedthattheordinatebcmovesintotheplaceBC,sothatthepointciscoincidentwiththepointC;andtherightlineCK,andconsequentlythecurveCc,iscoincidentwiththetangentCH。InwhichcasethemixtilinearevanescenttriangleCEcwill,initslastform,besimilartothetriangleCET:anditsevanescentsidesCE,EcandCc,willbeproportionaltoCE,ETandCT,thesidesofthetriangleCET。AndthereforeitisconcludedthatthefluxionsofthelinesAB,BC,andAC,beinginthelastratiooftheirevanescentincrements,areproportionaltothesidesofthetriangleCET,or,whichisallone,ofthetriangleVBCsimilarthereunto。[`Introd。adQuadraturamCurvarum。’]Itisparticularlyremarkedandinsistedonbythegreatauthor,thatthepointsCandcmustnotbedistantonefromanother,byanytheleastintervalwhatsoever:butthat,inordertofindtheultimateproportionsofthelinesCE,Ec,andCc(i。e。theproportionsofthefluxionsorvelocities)expressedbythefinitesidesofthetriangleVBC,thepointsCandcmustbeaccuratelycoincident,i。e。oneandthesame。Apointthereforeisconsideredasatriangle,oratriangleissupposedtobeformedinapoint。Whichtoconceiveseemsquiteimpossible。Yetsometherearewho,thoughtheyshrinkatallothermysteries,makenodifficultyoftheirown,whostrainatagnatandswallowacamel。
35。Iknownotwhetheritbeworthwhiletoobserve,thatpossiblysomemenmayhopetooperatebysymbolsandsuppositions,insuchsortastoavoidtheuseoffluxions,momentums,andinfinitesimals,afterthefollowingmanner。Supposextobeoneabscissaofacurve,andzanotherabscissaofthesamecurve。Supposealsothattherespectiveareasarexxxandzzz:andthatz-xistheincrementoftheabscissa,andzzz-xxxtheincrementofthearea,withoutconsideringhowgreatorhowsmallthoseincrementsmaybe。Dividenowzzz-xxxbyz-x,andthequotientwillbezzzxxx:and,supposingthatzandxareequal,thesamequotientwillbe3xx,whichinthatcaseistheordinate,whichthereforemaybethusobtainedindependentlyoffluxionsandinfinitesimals。Buthereinisadirectfallacy:
forinthefirstplace,itissupposedthattheabscissaezandxareunequal,withoutsuchsuppositionnoonestepcouldhavebeenmade;andinthesecondplace,itissupposedtheyareequal;whichisamanifestinconsistency,andamountstothesamethingthathathbeenbeforeconsidered。[Sect。15。]Andthereisindeedreasontoapprehendthatallattemptsforsettingtheabstruseandfinegeometryonarightfoundation,andavoidingthedoctrineofvelocities,momentums,&;c。
willbefoundimpracticable,tillsuchtimeastheobjectandtheendofgeometryarebetterunderstoodthanhithertotheyseemtohavebeen。Thegreatauthorofthemethodoffluxionsfeltthisdifficulty,andthereforehegaveintothoseniceabstractionsandgeometricalmetaphysicswithoutwhichhesawnothingcouldbedoneonthereceivedprinciples:andwhatinthewayofdemonstrationhehathdonewiththemthereaderwilljudge。
Itmust,indeed,beacknowledgedthatheusedfluxions,likethescaffoldofabuilding,asthingstobelaidasideorgotridofassoonasfinitelineswerefoundproportionaltothem。Butthenthesefiniteexponentsarefoundbythehelpoffluxions。Whateverthereforeisgotbysuchexponentsandproportionsistobeascribedtofluxions:whichmustthereforebepreviouslyunderstood。Andwhatarethesefluxions?Thevelocitiesofevanescentincrements。Andwhatarethesesameevanescentincrements?Theyareneitherfinitequantitiesnorquantitiesinfinitelysmall,noryetnothing。Maywenotcallthemtheghostsofdepartedquantities?
36。Mentoooftenimposeonthemselvesandothersasiftheyconceivedandunderstoodthingsexpressedbysigns,whenintruththeyhavenoidea,saveonlyoftheverysignsthemselves。Andtherearesomegroundstoapprehendthatthismaybethepresentcase。Thevelocitiesofevanescentornascentquantitiesaresupposedtobeexpressed,bothbyfinitelinesofadeterminatemagnitude,andbyalgebraicalnotesorsigns:butIsuspectthatmanywho,perhapsneverhavingexaminedthemattertakeitforgranted,would,uponanarrowscrutiny,finditimpossibletoframeanyideaornotionwhatsoeverofthosevelocities,exclusiveofsuchfinitequantitiesandsigns。SupposethelineKPdescribedbythemotionofapointcontinuallyaccelerated,andthatinequalparticlesoftimetheunequalpartsKL,LM,MN,NO,&;c。aregenerated。Supposealsothata,b,c,d,e,&;c。denotethevelocitiesofthegeneratingpoint,attheseveralperiodsofthepartsorincrementssogenerated。Itiseasytoobservethattheseincrementsareeachproportionaltothesumofthevelocitieswithwhichitisdescribed:that,consequently,theseveralsumsofthevelocities,generatedinequalpartsoftime,maybesetforthbytherespectivelinesKL,LM,MN,&;c。
generatedinthesametimes。Itislikewiseaneasymattertosay,thatthelastvelocitygeneratedinthefirstparticleoftimemaybeexpressedbythesymbola,thelastinthesecondbyb,thelastinthethirdbyc,andsoon:thataisthevelocityofLMinstatunascenti,andb,c,d,e,&;c。
arethevelocitiesoftheincrementsMN,NO,OP,&;c。
intheirrespectivenascentestates。Youmayproceedandconsiderthesevelocitiesthemselvesasflowingorincreasingquantities,takingthevelocitiesofthevelocities,andthevelocitiesofthevelocitiesofthevelocities,i。e。thefirst,second,third&;c。velocitiesadinfinitum:
whichsucceedingseriesofvelocitiesmaybethusexpressed,a,b-a,c-2ba,d-3c3b-a&;c。whichyoumaycallbythenamesofthefirst,second,third,fourthfluxions。AndforanapterexpressionyoumaydenotethevariableflowinglineKL,KM,KN,&;c。bytheletterx;andthefirstfluxionsby,thesecondby,thethirdby,andsoonadinfinitum。
37。Nothingiseasierthantoassignnames,signs,orexpressionstothesefluxions;anditisnotdifficulttocomputeandoperatebymeansofsuchsigns。Butitwillbefoundmuchmoredifficulttoomitthesignsandyetretaininourmindsthethingswhichwesupposetobesignifiedbythem。Toconsidertheexponents,whethergeometrical,oralgebraical,orfluxionary,isnodifficultmatter。Buttoformapreciseideaofathirdvelocityforinstance,initselfandbyitself,Hocopus,hiclabor。Norindeedisitaneasypointtoformaclearanddistinctideaofanyvelocityatall,exclusiveofandprescindingfromalllengthoftimeandspace;asalsofromallnotes,signs,orsymbolswhatsoever。This,ifImaybeallowedtojudgeofothersbymyself,isimpossible。Tomeitseemsevidentthatmeasuresandsignsareabsolutelynecessaryinordertoconceiveorreasonaboutvelocities;andthatconsequently,whenwethinktoconceivethevelocitiessimplyandinthemselves,wearedeludedbyvainabstractions。
38。Itmayperhapsbethoughtbysomeaneasiermethodofconceivingfluxionstosupposethemthevelocitieswherewiththeinfinitesimaldifferencesaregenerated。Sothatthefirstfluxionsshallbethevelocitiesofthefirstdifferences,thesecondthevelocitiesoftheseconddifferences,thethirdfluxionsthevelocitiesofthethirddifferences,andsoonadinfinitum。But,nottomentiontheinsurmountabledifficultyofadmittingorconceivinginfinitesimals,andinfinitesimalsofinfinitesimals,&;c。,itisevidentthatthisnotionoffluxionswouldnotconsistwiththegreatauthor’sview;whoheldthattheminutestquantityoughtnottobeneglected,thatthereforethedoctrineofinfinitesimaldifferenceswasnottobeadmittedingeometry,andwhoplainlyappearstohaveintroducedtheuseofvelocitiesorfluxions,onpurposetoexcludeordowithoutthem。
39。Toothersitmaypossiblyseemthatweshouldformajusterideaoffluxionsbyassumingthefinite,unequal,isochronalincrementsKL,LM,MN,&;c。,andconsideringtheminstatunascenti,alsotheirincrementsinstatunascenti,andthenascentincrementsofthoseincrements,andsoon,supposingthefirstnascentincrementstobeproportionaltothefirstfluxionsorvelocities,thenascentincrementsofthoseincrementstobeproportionaltothesecondfluxions,thethirdnascentincrementstobeproportionaltothethirdfluxions,andsoonwards。And,asthefirstfluxionsarethevelocitiesofthefirstnascentincrements,sothesecondfluxionsmaybeconceivedtobethevelocitiesofthesecondnascentincrements,ratherthanthevelocitiesofvelocities。Butwhichmeanstheanalogyoffluxionsmayseembetterpreserved,andthenotionrenderedmoreintelligible。
40。Andindeeditshouldseemthatinthewayofobtainingthesecondorthirdfluxionofanequationthegivenfluxionswereconsideredratherasincrementsthanvelocities。Buttheconsideringthemsometimesinonesense,sometimesinanother,onewhileinthemselves,anotherintheirexponents,seemstohaveoccasionednosmallshareofthatconfusionandobscuritywhicharefoundinthedoctrineoffluxions。
Itmayseemthereforethatthenotionmightbestillmended,andthatinsteadoffluxionsoffluxions,offluxionsoffluxionsoffluxions,andinsteadofsecond,third,orfourth,&;c。fluxionsofagivenquantity,itmightbemoreconsistentandlessliabletoexceptiontosay,thefluxionofthefirstnascentincrement,i。e。thesecondfluxion;thefluxionofthesecondnascentincrementi。e。thethirdfluxion;thefluxionofthethirdnascentincrement,i。e。thefourthfluxion-whichfluxionsareconceivedrespectivelyproportional,eachtothenascentprincipleoftheincrementsucceedingthatwhereofitisthefluxion。
41。ForthemoredistinctconceptionofallwhichitmaybeconsideredthatifthefiniteincrementLM[Seetheforegoingschemeinsect。36。]bedividedintotheisochronalpartsLm,mn,no,oM;andtheincrementMNdividedintothepartsMp,pq,qr,rNisochronaltotheformer;asthewholeincrementsLM,MNareproportionaltothesumsoftheirdescribingvelocities,evensothehomologousparticlesLm,Mparealsoproportionaltotherespectiveacceleratedvelocitieswithwhichtheyaredescribed。And,asthevelocitywithwhichMpisgenerated,exceedsthatwithwhichLmwasgenerated,evensotheparticleMpexceedstheparticleLm。Andingeneral,astheisochronalvelocitiesdescribingtheparticlesofMNexceedtheisochronalvelocitiesdescribingtheparticlesofLM,evensotheparticlesoftheformerexceedthecorrespondentparticlesofthelatter。
Andsothiswillhold,bethesaidparticleseversosmall。MNthereforewillexceedLMiftheyarebothtakenintheirnascentstates:andthatexcesswillbeproportionaltotheexcessofthevelocitybabovethevelocitya。Hencewemayseethatthislastaccountoffluxionscomes,intheupshot,tothesamethingwiththefirst。[Sect。
36。]
42。But,notwithstandingwhathathbeensaid,itmuststillbeacknowledgedthatthefiniteparticlesLmorMp,thoughtakeneversosmall,arenotproportionaltothevelocitiesaandb;buteachtoaseriesofvelocitieschangingeverymoment,orwhichisthesamething,toanacceleratedvelocity,bywhichitisgeneratedduringacertainminuteparticleoftime:thatthenascentbeginningsorevanescentendingsoffinitequantities,whichareproducedinmomentsorinfinitelysmallpartsoftime,arealoneproportionaltogivenvelocities:
thattherefore,inordertoconceivethefirstfluxions,wemustconceivetimedividedintomoments,incrementsgeneratedinthosemoments,andvelocitiesproportionaltothoseincrements:that,inordertoconceivesecondandthirdfluxions,wemustsupposethatthenascentprinciplesormomentaneousincrementshavethemselvesalsoothermomentaneousincrements,whichareproportionaltotheirrespectivegeneratingvelocities:thatthevelocitiesofthesesecondmomentaneousincrementsaresecondfluxions:thoseoftheirnascentmomentaneousincrementsthirdfluxions。Andsoonadinfinitum。
43。Bysubductingtheincrementgeneratedinthefirstmomentfromthatgeneratedinthesecond,wegettheincrementofanincrement。Andbysubductingthevelocitygeneratinginthefirstmomentfromthatgeneratinginthesecond,wegetafluxionofafluxion。Inlikemanner,bysubductingthedifferenceofthevelocitiesgeneratinginthetwofirstmomentsfromtheexcessofthevelocityinthethirdabovethatinthesecondmoment,weobtainthethirdfluxion。Andafterthesameanalogywemayproceedtofourth,fifth,sixthfluxions&;c。Andifwecallthevelocitiesofthefirst,second,third,fourthmoments,a,b,c,d,theseriesoffluxionswillbeasabove,a,b-a,c-2ba,d-3c3b-a,adinfinitum,i。e。,,,,adinfinitum。
44。Thusfluxionsmaybeconceivedinsundrylightsandshapes,whichseemallequallydifficulttoconceive。And,indeed,asitisimpossibletoconceivevelocitywithouttimeorspace,withouteitherfinitelengthorfiniteduration,[Sect。31]itmustseemabovethepowersofmentocomprehendeventhefirstfluxions。Andifthefirstareincomprehensible,whatshallwesayofthesecondandthirdfluxions,&;c。?Hewhocanconceivethebeginningofabeginning,ortheendofanend,somewhatbeforethefirstorafterthelast,maybeperhapssharpsightedenoughtoconceivethesethings。Butmostmenwill,Ibelieve,finditimpossibletounderstandtheminanysensewhatever。
45。Onewouldthinkthatmencouldnotspeaktooexactlyonsoniceasubject。Andyet,aswasbeforehinted,wemayoftenobservethattheexponentsoffluxions,ornotesrepresentingfluxionsarecompoundedwiththefluxionsthemselves。Isnotthisthecasewhen,justafterthefluxionsofflowingquantitiesweresaidtobetheceleritiesoftheirincreasing,andthesecondfluxionstobethemutationsofthefirstfluxionsorcelerities,wearetoldthat[`DeQuadraturaCurvarum。’]representsaseriesofquantitieswhereofeachsubsequentquantityisthefluxionofthepreceding:andeachforegoingisafluentquantityhavingthefollowingoneforitsfluxion?
46。Diversseriesofquantitiesandexpressions,geometricalandalgebraical,maybeeasilyconceived,inlines,insurfaces,inspecies,tobecontinuedwithoutendorlimit。Butitwillnotbefoundsoeasytoconceiveaseries,eitherofmerevelocitiesorofmerenascentincrements,distincttherefromandcorrespondingthereunto。Someperhapsmaybeledtothinktheauthorintendedaseriesofordinates,whereineachordinatewasthefluxionoftheprecedingandfluentofthefollowing,i。e。thatthefluxionofoneordinatewasitselftheordinateofanothercurve;andthefluxionofthislastordinatewastheordinateofyetanothercurve;andsoonadinfinitum。Butwhocanconceivehowthefluxion(whethervelocityornascentincrement)ofanordinateshouldbeitselfanordinate?Ormorethanthateachprecedingquantityorfluentisrelatedtoitssubsequentorfluxion,astheareaofacurvilinearfiguretoitsordinate;agreeablytowhattheauthorremarks,thateachprecedingquantityinsuchseriesisastheareaofacurvilinearfigure,whereoftheabscissaisz,andtheordinateisthefollowingquantity?
47。Uponthewholeitappearsthattheceleritiesaredismissed,andinsteadthereofareasandordinatesareintroduced。
But,howeverexpedientsuchanalogiesorsuchexpressionsmaybefoundforfacilitatingthemodernquadratures,yetweshallnotfindanylightgivenustherebyintotheoriginalrealnatureoffluxions;orthatweareenabledtoframefromthencejustideasoffluxionsconsideredinthemselves。
Inallthisthegeneralultimatedriftoftheauthorisveryclear,buthisprinciplesareobscure。Butperhapsthosetheoriesofthegreatauthorarenotminutelyconsideredorcanvassedbyhisdisciples;whoseemeager,aswasbeforehinted,rathertooperatethantoknow,rathertoapplyhisrulesandhisformsthantounderstandhisprinciplesandenterintohisnotions。Itisneverthelesscertainthat,inordertofollowhiminhisquadratures,theymustfindfluentsfromfluxions;andinordertothis,theymustknowtofindfluxionsfromfluents;andinordertofindfluxions,theymustfirstknowwhatfluxionsare。Otherwisetheyproceedwithoutclearnessandwithoutscience。Thusthedirectmethodprecedestheinverse,andtheknowledgeoftheprinciplesissupposedinboth。Butasforoperatingaccordingtorules,andbythehelpofgeneralforms,whereoftheoriginalprinciplesandreasonsarenotunderstood,thisistobeesteemedmerelytechnical。Betheprinciplesthereforeeversoabstruseandmetaphysical,theymustbestudiedbywhoeverwouldcomprehendthedoctrineoffluxions。
Norcananygeometricianhavearighttoapplytherulesofthegreatauthor,withoutfirstconsideringhismetaphysicalnotionswhencetheywerederived。
These,howevernecessarysoeverinordertoscience,whichcanneverbeobtainedwithoutaprecise,clear,andaccurateconceptionoftheprinciples-areneverthelessbyseveralcarelesslypassedover;whiletheexpressionsalonearedweltonandconsideredandtreatedwithgreatskillandmanagement,thencetoobtainotherexpressionsbymethodssuspiciousandindirect(tosaytheleast)ifconsideredinthemselves,howeverrecommendedbyInductionandAuthority;twomotiveswhichareacknowledgedsufficienttobegetarationalfaithandmoralpersuasion,butnothinghigher。
48。Youmaypossiblyhopetoevadetheforceofallthathathbeensaid,andtoscreenfalseprinciplesandinconsistentreasonings,byageneralpretencethattheseobjectionsandremarksaremetaphysical。Butthisisavainpretence。Fortheplainsenseandtruthofwhatisadvancedintheforegoingremarks,Iappealtotheunderstandingofeveryunprejudicedintelligentreader。TothesameIappeal,whetherthepointsremarkeduponarenotmostincomprehensiblemetaphysics。Andmetaphysicsnotofmine,butyourown。Iwouldnotbeunderstoodtoinferthatyournotionsarefalseorvainbecausetheyaremetaphysical。Nothingiseithertrueoffalseforthatreason。Whetherapointbecalledmetaphysicalornoavailslittle。Thequestionis,whetheritbeclearorobscure,rightorwrong,wellorilldeduced?
49。Althoughmomentaneousincrements,nascentandevanescentquantities,fluxionsandinfinitesimalsofalldegreesareintruthsuchshadowyentities,sodifficulttoimagineorconceivedistinctly,that(tosaytheleast)theycannotbeadmittedasprinciplesorobjectsofclearandaccuratescience;andalthoughthisobscurityandincomprehensibilityofyourmetaphysicshadbeenalonesufficienttoallayyourpretensionstoevidence;yetithath,ifImistakenot,beenfurthershewn,thatyourinferencesarenomorejustthanyourconceptionsareclear,andthatyourlogicsareasexceptionableasyourmetaphysics。Itwouldseem,therefore,uponthewhole,thatyourconclusionsarenotattainedbyjustreasoningfromclearprinciples:consequently,thattheemploymentofmodernanalysts,howeverusefulinmathematicalcalculationsandconstructions,dothnothabituateandqualifythemindtoapprehendclearlyandinferjustly;and,consequently,thatyouhavenoright,invirtueofsuchhabits,todictateoutofyourpropersphere,beyondwhichyourjudgmentistopassfornomorethanthatofothermen。
50。OfalongtimeIhavesuspectedthatthesemodernanalyticswerenotscientifical,andgavesomehintsthereoftothepublicabouttwenty-fiveyearsago。Sincewhichtime,Ihavebeendivertedbyotheroccupations,andimaginedImightemploymyselfbetterthanindeducingandlayingtogethermythoughtsonsoniceasubject。AndthoughoflateIhavebeencalledupontomakegoodmysuggestions;yet,asthepersonwhomadethiscalldothnotappeartothinkmaturelyenoughtounderstandeitherthosemetaphysicswhichhewouldrefute,ormathematicswhichhewouldpatronize,Ishouldhavesparedmyselfthetroubleofwritingforhisconviction。NorshouldInowhavetroubledyouormyselfwiththisaddress,aftersolonganintermissionofthesestudies,wereitnottoprevent,sofarasIamable,yourimposingonyourselfandothersinmattersofmuchhighermomentandconcern。And,totheendthatyoumaymoreclearlycomprehendtheforceanddesignoftheforegoingremarks,andpursuethemstillfartherinyourownmeditations,IshallsubjointhefollowingQueries。
Query1。Whethertheobjectofgeometrybenottheproportionsofassignableextensions?Andwhethertherebeanyneedofconsideringquantitieseitherinfinitelygreatorinfinitelysmall?
Qu。2。Whethertheendofgeometrybenottomeasureassignablefiniteextension?Andwhetherthispracticalviewdidnotfirstputmenonthestudyofgeometry?
Qu。3。Whetherthemistakingtheobjectandendofgeometryhathnotcreatedneedlessdifficulties,andwrongpursuitsinthatscience?
Qu。4。Whethermenmayproperlybesaidtoproceedinascientificmethod,withoutclearlyconceivingtheobjecttheyareconversantabout,theendproposed,andthemethodbywhichitispursued?
Qu。5。Whetheritdothnotsuffice,thateveryassignablenumberofpartsmaybecontainedinsomeassignablemagnitude?
Andwhetheritbenotunnecessary,aswellasabsurd,tosupposethatfiniteextensionisinfinitelydivisible?
Qu。6。Whetherthediagramsinageometricaldemonstrationarenottobeconsideredassignsofallpossiblefinitefigures,ofallsensibleandimaginableextensionsormagnitudesofthesamekind?
Qu。7。Whetheritbepossibletofreegeometryfrominsuperabledifficultiesandabsurdities,solongaseithertheabstractgeneralideaofextension,orabsoluteexternalextensionbesupposeditstrueobject?
Qu。8。Whetherthenotionsofabsolutetime,absoluteplace,andabsolutemotionbenotmostabstractedlymetaphysical?
Whetheritbepossibleforustomeasure,compute,orknowthem?
Qu。9。Whethermathematiciansdonotengagethemselvesindisputesandparadoxesconcerningwhattheyneitherdonorcanconceive?Andwhetherthedoctrineofforcesbenotasufficientproofofthis?[SeeaLatintreatise,`DeMotu,’publishedatLondonintheyear1721。]
Qu。10。Whetheringeometryitmaynotsufficetoconsiderassignablefinitemagnitude,withoutconcerningourselveswithinfinity?Andwhetheritwouldnotberightertomeasurelargepolygonshavingfinitesides,insteadofcurves,thantosupposecurvesarepolygonsofinfinitesimalsides,asuppositionneithertruenorconceivable?
Qu。11。Whethermanypointswhicharenotreadilyassentedtoarenotneverthelesstrue?Andwhoseinthetwofollowingqueriesmaynotbeofthatnumber?
Qu。12。Whetheritbepossiblethatweshouldhavehadanideaornotionofextensionpriortomotion?Orwhether,ifamanhadneverperceivedmotion,hewouldeverhaveknownorconceivedonethingtobedistantfromanother?
Qu。13。Whethergeometricalquantityhathco-existentparts?Andwhetherallquantitybenotinafluxaswellastimeandmotion?
Qu。14。WhetherextensioncanbesupposedanattributeofaBeingimmutableandeternal?
Qu。15。Whethertodeclineexaminingtheprinciples,andunravellingthemethodsusedinmathematicswouldnotshewabigotryinmathematicians?
Qu。16。Whethercertainmaximsdonotpasscurrentamonganalystswhichareshockingtogoodsense?Andwhetherthecommonassumption,thatafinitequantitydividedbynothingisinfinite,benotofthisnumber?
Qu。17。Whethertheconsideringgeometricaldiagramsabsolutelyorinthemselves,ratherthanasrepresentativesofallassignablemagnitudesorfiguresofthesamekind,benotaprinciplecauseofthesupposingfiniteextensioninfinitelydivisible;andofallthedifficultiesandabsurditiesconsequentthereupon?
Qu。18。Whether,fromgeometricalpropositionsbeinggeneral,andthelinesindiagramsbeingthereforegeneralsubstitutesorrepresentatives,itdothnotfollowthatwemaynotlimitorconsiderthenumberofpartsintowhichsuchparticularlinesaredivisible?
Qu。19。Whenitissaidorimplied,thatsuchacertainlinedelineatedonpapercontainsmorethananyassignablenumberofparts,whetheranymoreintruthoughttobeunderstood,thanthatitisasignindifferentlyrepresentingallfinitelines,betheyeversogreat。Inwhichrelativecapacityitcontains,i。e。standsformorethananyassignablenumberofparts?Andwhetheritbenotaltogetherabsurdtosupposeafiniteline,consideredinitselforinitsownpositivenature,shouldcontainaninfinitenumberofparts?
Qu。20。Whetherallargumentsfortheinfinitedivisibilityoffiniteextensiondonotsupposeandimply,eithergeneralabstractideas,orabsoluteexternalextensiontobetheobjectofgeometry?
And,therefore,whether,alongwiththosesuppositions,suchargumentsalsodonotceaseandvanish?
Qu。21。Whetherthesupposedinfinitedivisibilityoffiniteextensionhathnotbeenasnaretomathematiciansandathornintheirsides?Andwhetheraquantityinfinitelydiminishedandaquantityinfinitelysmallarenotthesamething?
Qu。22。Whetheritbenecessarytoconsidervelocitiesofnascentorevanescentquantities,ormoments,orinfinitesimals?
Andwhethertheintroducingofthingssoinconceivablebenotareproachtomathematics?
Qu。23。Whetherinconsistenciescanbetruths?Whetherpointsrepugnantandabsurdaretobeadmitteduponanysubjects,orinanyscience?Andwhethertheuseofinfinitesoughttobeallowedasasufficientpretextandapologyfortheadmittingofsuchpointsingeometry?
Qu。24。Whetheraquantitybenotproperlysaidtobeknown,whenweknowitsproportiontogivenquantities?Andwhetherthisproportioncanbeknownbutbyexpressionsorexponents,eithergeometrical,algebraical,orarithmetical?Andwhetherexpressionsinlinesorspeciescanbeusefulbutsofarforthastheyarereducibletonumbers?
Qu。25。Whetherthefindingoutproperexpressionsornotationsofquantitybenotthemostgeneralcharacterandtendencyofthemathematics?Andarithmeticaloperationthatwhichlimitsanddefinestheiruse?
Qu。26。Whethermathematicianshavesufficientlyconsideredtheanalogyanduseofsigns?Andhowfarthespecificlimitednatureofthingscorrespondsthereto?
Qu。27。Whetherbecause,instatingageneralcaseofpurealgebra,weareatfulllibertytomakeacharacterdenoteeitherapositiveoranegativequantity,ornothingatall,wemaytherefore,inageometricalcase,limitedbyhypothesesandreasoningsfromparticularpropertiesandrelationsoffigures,claimthesamelicence?
Qu。28。Whethertheshiftingofthehypothesis,or(aswemaycallit)thefallaciasuppositionisbenotasophismthatfarandwideinfectsthemodernreasonings,bothinthemechanicalphilosophyandintheabstruseandfinegeometry?
Qu。29。Whetherwecanformanideaornotionofvelocitydistinctfromandexclusiveofitsmeasures,aswecanofheatdistinctfromandexclusiveofthedegreesonthethermometerbywhichitismeasured?Andwhetherthisbenotsupposedinthereasoningsofmodernanalysts?
Qu。30。Whethermotioncanbeconceivedinapointofspace?Andifmotioncannot,whethervelocitycan?Andifnot,whetherafirstorlastvelocitycanbeconceivedinamerelimit,eitherinitialorfinal,ofthedescribedspace?
Qu。31。Wheretherearenoincrements,whethertherecanbeanyratioofincrements?Whethernothingscanbeconsideredasproportionaltorealquantities?Orwhethertotalkoftheirproportionsbenottotalknonsense?Alsoinwhatsensewearetounderstandtheproportionofasurfacetoaline,ofanareatoanordinate?
Andwhetherspeciesornumbers,thoughproperlyexpressingquantitieswhicharenothomogeneous,mayyetbesaidtoexpresstheirproportiontoeachother?
Qu。32。Whetherifallassignablecirclesmaybesquared,thecircleisnot,toallintentsandpurposes,squaredaswellastheparabola?Ofwhetheraparabolicareacaninfactbemeasuredmoreaccuratelythanacircular?
Qu。33。Whetheritwouldnotberightertoapproximatefairlythantoendeavourataccuracybysophisms?
Qu。34。Whetheritwouldnotbemoredecenttoproceedbytrialsandinductions,thantopretendtodemonstratebyfalseprinciples?
Qu。35。Whethertherebenotawayofarrivingattruth,althoughtheprinciplesarenotscientific,northereasoningjust?Andwhethersuchawayoughttobecalledaknackorascience?
Qu。36。Whethertherecanbescienceoftheconclusionwherethereisnotevidenceoftheprinciples?Andwhetheramancanhaveevidenceoftheprincipleswithoutunderstandingthem?Andtherefore,whetherthemathematiciansofthepresentageactlikemenofscience,intakingsomuchmorepainstoapplytheirprinciplesthantounderstandthem?
Qu。37。Whetherthegreatestgeniuswrestlingwithfalseprinciplesmaynotbefoiled?Andwhetheraccuratequadraturescanbeobtainedwithoutnewpostulataorassumptions?Andifnot,whetherthosewhichareintelligibleandconsistentoughtnottobepreferredtothecontrary?Seesect。28and29。
Qu。38。Whethertediouscalculationsinalgebraandfluxionsbethelikeliestmethodtoimprovethemind?Andwhethermen’sbeingaccustomedtoreasonaltogetheraboutmathematicalsignsandfiguresdothnotmakethematalosshowtoreasonwithoutthem?
Qu。39。Whether,whateverreadinessanalystsacquireinstatingaproblem,orfindingaptexpressionsformathematicalquantities,thesamedothnecessarilyinferaproportionableabilityinconceivingandexpressingothermatters?
Qu。40。Whetheritbenotageneralcaseorrule,thatoneandthesamecoefficientdividingequalproductsgivesequalquotients?Andyetwhethersuchcoefficientcanbeinterpretedbyoornothing?Orwhetheranyonewillsaythatiftheequation2o=5obedividedbyo,thequotientsonbothsidesareequal?Whetherthereforeacasemaynotbegeneralwithrespecttoallquantitiesandyetnotextendtonothings,orincludethecaseofnothing?Andwhetherthebringingnothingunderthenotionofquantitymaynothavebetrayedmenintofalsereasoning?
Qu。41。Whetherinthemostgeneralreasoningsaboutequalitiesandproportionsmenmaynotdemonstrateaswellasingeometry?Whetherinsuchdemonstrationstheyarenotobligedtothesamestrictreasoningasingeometry?Andwhethersuchtheirreasoningsarenotdeducedfromthesameaxiomswiththoseingeometry?Whetherthereforealgebrabenotastrulyascienceasgeometry?
Qu。42。Whethermenmaynotreasoninspeciesaswellasinwords?Whetherthesamerulesoflogicdonotobtaininbothcases?Andwhetherwehavenotarighttoexpectanddemandthesameevidenceinboth?
Qu。43。Whetheranalgebraist,fluxionist,geometrician,ordemonstratorofanykindcanexpectindulgenceforobscureprinciplesorincorrectreasonings?Andwhetheranalgebraicalnoteorspeciescanattheendofaprocessbeinterpretedinasensewhichcouldnothavebeensubstitutedforitatthebeginning?Orwhetheranyparticularsuppositioncancomeunderageneralcasewhichdothnotconsistwiththereasoningthereof?
Qu。44。Whetherthedifferencebetweenamerecomputerandamanofsciencebenot,thattheonecomputesonprinciplesclearlyconceived,andbyrulesevidentlydemonstrated,whereastheotherdothnot?
Qu。45。Whether,althoughgeometrybeascience,andalgebraallowedtobeascience,andtheanalyticalamostexcellentmethod,intheapplication,nevertheless,oftheanalysistogeometry,menmaynothaveadmittedfalseprinciplesandwrongmethodsofreasoning?
Qu。46。Whether,althoughalgebraicalreasoningsareadmittedtobeeversojust,whenconfinedtosignsorspeciesasgeneralrepresentativesofquantity,youmaynotneverthelessfallintoerror,if,whenyoulimitthemtostandforparticularthings,youdonotlimityourselftoreasonconsistentlywiththenatureofsuchparticularthings?
Andwhethersucherroroughttobeimputedtopurealgebra?
Qu。47。Whethertheviewofmodernmathematiciansdothnotratherseemtobethecomingatanexpressionbyartifice,thanatthecomingatsciencebydemonstration?
Qu。48。Whethertheremaynotbesoundmetaphysicsaswellasunsound?Soundaswellasunsoundlogic?Andwhetherthemodernanalyticsmaynotbebroughtunderoneofthesedenominations,andwhich?
Qu。49。Whethertherebenotreallyaphilosophiaprima,acertaintranscendentalsciencesuperiortoandmoreextensivethanmathematics,whichitmightbehoveourmodernanalystsrathertolearnthandespise?
Qu。50。Whether,eversincetherecoveryofmathematicallearning,therehavenotbeenperpetualdisputesandcontroversiesamongthemathematicians?Andwhetherthisdothnotdisparagetheevidenceoftheirmethods?
Qu。51。Whetheranythingbutmetaphysicsandlogiccanopentheeyesofmathematiciansandextricatethemoutoftheirdifficulties?
Qu。52。Whether,uponthereceivedprinciples,aquantitycanbyanydivisionorsubdivision,thoughcarriedeversofar,bereducedtonothing?
Qu。53。Whether,iftheendofgeometrybepractice,andthispracticebemeasuring,andwemeasureonlyassignableextensions,itwillnotfollowthatunlimitedapproximationscompletelyanswertheintentionofgeometry?
Qu。54。Whetherthesamethingswhicharenowdonebyinfinitesmaynotbedonebyfinitequantities?Andwhetherthiswouldnotbeagreatrelieftotheimaginationsandunderstandingsofmathematicalmen?
Qu。55。Whetherthosephilomathematicalphysicians,anatomists,anddealersintheanimaleconomy,whoadmitthedoctrineoffluxionswithanimplicitfaith,canwithagoodgraceinsultothermenforbelievingwhattheydonotcomprehend?
Qu。56。Whetherthecorpuscularian,experimental,andmathematicalphilosophy,somuchcultivatedinthelastage,hathnottoomuchengrossedmen’sattention;somepartwhereofitmighthaveusefullyemployed?
Qu。57。Whether,fromthisandotherconcurringcauses,themindsofspeculativemenhavenotbeenbornedownward,tothedebasingandstupifyingofthehigherfaculties?Andwhetherwemaynothenceaccountforthatprevailingnarrownessandbigotryamongmanywhopassformenofscience,theirincapacityforthingsmoral,intellectual,ortheological,theirpronenesstomeasurealltruthsbysenseandexperienceofanimallife?
Qu。58。Whetheritbereallyaneffectofthinking,thatthesamemenadmirethegreatauthorforhisfluxions,andderidehimforhisreligion?
Qu。59。Ifcertainphilosophicalvirtuosiofthepresentagehavenoreligion,whetheritcanbesaidtobewantoffaith?
Qu。60。Whetheritbenotajusterwayofreasoning,torecommendpointsoffaithfromtheireffects,thantodemonstratemathematicalprinciplesbytheirconclusions?
Qu。61。Whetheritbenotlessexceptionabletoadmitpointsabovereasonthancontrarytoreason?
Qu。62。WhethermysteriesmaynotwithbetterrightbeallowedofinDivineFaiththaninhumanscience?
Qu。63。Whethersuchmathematiciansascryoutagainstmysterieshaveeverexaminedtheirownprinciples?
Qu。64。Whethermathematicians,whoaresodelicateinreligiouspoints,arestrictlyscrupulousintheirownscience?
Whethertheydonotsubmittoauthority,takethingsupontrust,andbelievepointsinconceivable?Whethertheyhavenottheirmysteries,andwhatismore,theirrepugnancesandcontradictions?
Qu。65。Whetheritmightnotbecomemenwhoarepuzzledandperplexedabouttheirownprinciples,tojudgewarily,candidly,andmodestlyconcerningothermatters?
Qu。66。Whetherthemodernanalyticsdonotfurnishastrongargumentumadhominemagainstthephilomathematicalinfidelsofthesetimes?
Qu。67。Whetheritfollowsfromtheabove-mentionedremarks,thataccurateandjustreasoningisthepeculiarcharacterofthepresentage?Andwhetherthemoderngrowthofinfidelitycanbeascribedtoadistinctionsotrulyvaluable?
第2章