首页 >出版文学> The Analyst>第1章

第1章

  aDiscourseaddressedtoanInfidelMathematicianTheAnalyst:aDiscourseaddressedtoanInfidelMathematicianByGeorgeBerkeleyContents1。Mathematicianspresumedtobethegreatmastersofreason。Henceanunduedeferencetotheirdecisionswheretheyhavenorighttodecide。Thisonecauseofinfidelity。
  2。Theirprinciplesandmethodstobeexaminedwiththesamefreedomwhichtheyassumewithregardtotheprinciplesandmysteriesofreligion。Inwhatsenseandhowfargeometryistobeallowedanimprovementofthemind。
  3。Fluxionsthegreatobjectandemploymentoftheprofoundgeometriciansinthepresentage。Whatthesefluxionsare。
  4。Momentsornascentincrementsofflowingquantitiesdifficulttoconceive。Fluxionsofdifferentorders。Secondandthirdfluxionsobscuremysteries。
  5。Differences,i。e。incrementsordecrementsinfinitelysmall,usedbyforeignmathematiciansinsteadoffluxionsorvelocitiesofnascentandevanescentincrements。
  6。Differencesofvariousorders,i。e。quantitiesinfinitelylessthanquantitiesinfinitelylittle;andinfinitesimalpartsofinfinitesimalsofinfinitesimals,&;c。withoutendorlimit。
  7。Mysteriesinfaithunjustlyobjectedagainstbythosewhoadmittheminscience。
  8。ModernAnalystssupposedbythemselvestoextendtheirviewsevenbeyondinfinity:deludedbytheirownspeciesorsymbols。
  9。Methodforfindingthefluxionofarectangleoftwoindeterminatequantities,shewedtobeillegitimateandfalse。
  10。Implicitdeferenceofmathematicalmenforthegreatauthoroffluxions。Theirearnestnessrathertogoonfastandfar,thantosetoutwarilyandseetheirwaydistinctly。
  11。Momentumsdifficulttocomprehend。Nomiddlequantitytobeadmittedbetweenafinitequantityandnothing,withoutadmittinginfinitesimals。
  12。Thefluxionofanypowerofaflowingquantity。
  Lemmapremisedinordertoexaminethemethodforfindingsuchfluxion。
  13。Theruleforfluxionsofpowersattainedbyunfairreasoning。
  14。Theaforesaidreasoningfartherunfolded,andshewedtobeillogical。
  15。Notrueconclusiontobejustlydrawnbydirectconsequencefrominconsistentsuppositions。Thesamerulesofrightreasontobeobserved,whethermenargueinsymbolsorinwords。
  16。Anhypothesisbeingdestroyed,noconsequenceofsuchhypothesistoberetained。
  17。Hardtodistinguishbetweenevanescentincrementsandinfinitesimaldifferences。Fluxionsplacedinvariouslights。Thegreatauthor,itseems,notsatisfiedwithhisownnotions。
  18。QuantitiesinfinitelysmallsupposedandrejectedbyLeibnitzandhisfollowers。Noquantity,accordingtothem,greaterorsmallerfortheadditionorsubductionofitsinfinitesimal。
  19。Conclusionstobeprovedbytheprinciples,andnotprinciplesbytheconclusions。
  20。ThegeometricalAnalystconsideredasalogician;
  andhisdiscoveries,notinthemselves,butasderivedfromsuchprinciplesandbysuchinferences。
  21。Atangentdrawntotheparabolaaccordingtothecalculusdifferentialis。Truthshewntobetheresultoferror,andhow。
  22。ByvirtueofatwofoldmistakeAnalystsarriveattruth,butnotatscience:ignoranthowtheycomeattheirownconclusions。
  23。Theconclusionneverevidentoraccurate,invirtueofobscureorinaccuratepremises。Finitequantitiesmightberejectedaswellasinfinitesimals。
  24。Theforegoingdoctrinefartherillustrated。
  25。Sundryobservationsthereupon。
  26。Ordinatefoundfromtheareabymeansofevanescentincrements。
  27。Intheforegoingcase,thesupposedevanescentincrementisreallyafinitequantity,destroyedbyanequalquantitywithanoppositesign。
  28。Theforegoingcaseputgenerally。Algebraicalexpressionscomparedwiththegeometricalquantities。
  29。Correspondentquantitiesalgebraicalandgeometricalequated。Theanalysisshewednottoobtainininfinitesimals,butitmustalsoobtaininfinitequantities。
  30。Thegettingridofquantitiesbythereceivedprinciples,whetheroffluxionsorofdifferences,neithergoodgeometrynorgoodlogic。Fluxionsorvelocities,whyintroduced。
  31。Velocitiesnottobeabstractedfromtimeandspace:northeirproportionstobeinvestigatedorconsideredexclusivelyoftimeandspace。
  32。DifficultandobscurepointsconstitutetheprinciplesofthemodernAnalysis,andarethefoundationonwhichitisbuilt。
  33。Therationalfacultieswhetherimprovedbysuchobscureanalytics。
  34。Bywhatinconceivablestepsfinitelinesarefoundproportionaltofluxions。Mathematicalinfidelsstrainatagnatandswallowacamel。
  35。Fluxionsorinfinitesimalsnottobeavoidedonthereceivedprinciples。Niceabstractionsandgeometricalmetaphysics。
  36。Velocitiesofnascentorevanescentquantities,whetherinrealityunderstoodandsignifiedbyfinitelinesandspecies。
  37。Signsorexponentsobvious;butfluxionsthemselvesnotso。
  38。Fluxions,whetherthevelocitieswithwhichinfinitesimaldifferencesaregenerated。
  39。Fluxionsoffluxionsorsecondfluxions,whethertobeconceivedasvelocitiesofvelocities,orratherasvelocitiesofthesecondnascentincrements。
  40。Fluxionsconsidered,sometimesinonesense,sometimesinanother;onewhileinthemselves,anotherintheirexponents:
  henceconfusionandobscurity。
  41。Isochronalincrements,whetherfiniteornascent,proportionaltotheirrespectivevelocities。
  42。Timesupposedtobedividedintomoments:incrementsgeneratedinthosemoments:andvelocitiesproportionaltothoseincrements。
  43。Fluxions,second,third,fourth,&;c。,whattheyare,howobtained,andhowrepresented。Whatideaofvelocityinamomentoftimeandpointofspace。
  44。Fluxionsofallordersinconceivable。
  45。Signsorexponentsconfoundedwiththefluxions。
  46。Seriesofexpressionsorofnoteseasilycontrived。
  Whetheraseriesofmerevelocities,orofmerenascentincrementscorrespondingthereunto,beaseasilyconceived。
  47。Celeritiesdismissed,andinsteadthereofordinatesandareasintroduced。Analogiesandexpressionsusefulinthemodernquadratures,mayyetbeuselessforenablingustoconceivefluxions。Norighttoapplytheruleswithoutknowledgeoftheprinciples。
  48。MetaphysicsofmodernAnalystsmostincomprehensible。
  49。Analystsemployedaboutnotionalshadowyentities。
  Theirlogicsasexceptionableastheirmetaphysics。
  50。Occasionofthisaddress。Conclusion。Queries。
  THEANALYST:
  ADiscourseaddressedtoanInfidelMathematician1。ThoughIamastrangertoyourperson,yetIamnot,Sir,astrangertothereputationyouhaveacquiredinthatbranchoflearningwhichhathbeenyourpeculiarstudy;nortotheauthoritythatyouthereforeassumeinthingsforeigntoyourprofession;nortotheabusethatyou,andtoomanymoreofthelikecharacter,areknowntomakeuseofsuchundueauthority,tothemisleadingofunwarypersonsinmattersofthehighestconcernment,andwhereofyourmathematicalknowledgecanbynomeansqualifyyoutobeacompetentjudge。Equityindeedandgoodsensewouldinclineonetodisregardthejudgmentofmen,inpointswhichtheyhavenotconsideredorexamined。Butseveralwhomaketheloudestclaimtothosequalitiesdoneverthelesstheverythingtheywouldseemtodespise,clothingthemselvesintheliveryofothermen’sopinions,andputtingonageneraldeferenceforthejudgmentofyou,Gentlemen,whoarepresumedtobeofallmenthegreatestmastersofreason,tobemostconversantaboutdistinctideas,andnevertotakethingsontrust,butalwaysclearlytoseeyourway,asmenwhoseconstantemploymentisthededucingtruthbythejustestinferencefromthemostevidentprinciples。
  Withthisbiasontheirminds,theysubmittoyourdecisionswhereyouhavenorighttodecide。AndthatthisisoneshortwayofmakingInfidels,Iamcrediblyinformed。
  2。Whereasthenitissupposedthatyouapprehendmoredistinctly,considermoreclosely,infermorejustly,andconcludemoreaccuratelythanothermen,andthatyouarethereforelessreligiousbecausemorejudicious,IshallclaimtheprivilegeofaFree-thinker;
  andtakethelibertytoinquireintotheobject,principles,andmethodofdemonstrationadmittedbythemathematiciansofthepresentage,withthesamefreedomthatyoupresumetotreattheprinciplesandmysteriesofReligion;totheendthatallmenmayseewhatrightyouhavetolead,orwhatencouragementothershavetofollowyou。Ithathbeenanoldremark,thatGeometryisanexcellentLogic。Anditmustbeownedthatwhenthedefinitionsareclear;whenthepostulatacannotberefused,northeaxiomsdenied;whenfromthedistinctcontemplationandcomparisonoffigures,theirpropertiesarederived,byaperpetualwell-connectedchainofconsequences,theobjectsbeingstillkeptinview,andtheattentioneverfixeduponthem;thereisacquiredahabitofreasoning,closeandexactandmethodical:
  whichhabitstrengthensandsharpensthemind,andbeingtransferredtoothersubjectsisofgeneraluseintheinquiryaftertruth。Buthowfarthisisthecaseofourgeometricalanalysts,itmaybeworthwhiletoconsider。
  3。ThemethodofFluxionsisthegeneralkeybyhelpwhereofthemodernmathematiciansunlockthesecretsofGeometry,andconsequentlyofNature。And,asitisthatwhichhathenabledthemsoremarkablytooutgotheancientsindiscoveringtheoremsandsolvingproblems,theexerciseandapplicationthereofisbecomethemainifnotsoleemploymentofallthosewhointhisagepassforprofoundgeometers。
  Butwhetherthismethodbeclearorobscure,consistentorrepugnant,demonstrativeorprecarious,asIshallinquirewiththeutmostimpartiality,soIsubmitmyinquirytoyourownjudgment,andthatofeverycandidreader。Linesaresupposedtobegenerated[`Introd。adQuadraturamCurvarum。’]bythemotionofpoints,planesbythemotionoflines,andsolidsbythemotionofplanes。Andwhereasquantitiesgeneratedinequaltimesaregreaterorlesseraccordingtothegreaterorlesservelocitywherewiththeyincreaseandaregenerated,amethodhathbeenfoundtodeterminequantitiesfromthevelocitiesoftheirgeneratingmotions。Andsuchvelocitiesarecalledfluxions:andthequantitiesgeneratedarecalledflowingquantities。Thesefluxionsaresaidtobenearlyastheincrementsoftheflowingquantities,generatedintheleastequalparticlesoftime;andtobeaccuratelyinthefirstproportionofthenascent,orinthelastoftheevanescentincrements。
  Sometimes,insteadofvelocities,themomentaneousincrementsordecrementsofundeterminedflowingquantitiesareconsidered,undertheappellationofmoments。
  4。Bymomentswearenottounderstandfiniteparticles。
  Thesearesaidnottobemoments,butquantitiesgeneratedfrommoments,whichlastareonlythenascentprinciplesoffinitequantities。Itissaidthattheminutesterrorsarenottobeneglectedinmathematics:thatthefluxionsarecelerities,notproportionaltothefiniteincrements,thougheversosmall;butonlytothemomentsornascentincrements,whereoftheproportionalone,andnotthemagnitude,isconsidered。Andoftheaforesaidfluxionstherebeotherfluxions,whichfluxionsoffluxionsarecalledsecondfluxions。Andthefluxionsofthesesecondfluxionsarecalledthirdfluxions:andsoon,fourth,fifth,sixth,&;c。adinfinitum。
  Now,asourSenseisstrainedandpuzzledwiththeperceptionofobjectsextremelyminute,evensotheImagination,whichfacultyderivesfromsense,isverymuchstrainedandpuzzledtoframeclearideasoftheleastparticlesoftime,ortheleastincrementsgeneratedtherein:andmuchmoresotocomprehendthemoments,orthoseincrementsoftheflowingquantitiesinstatunascenti,intheirveryfirstoriginorbeginningtoexist,beforetheybecomefiniteparticles。Anditseemsstillmoredifficulttoconceivetheabstractedvelocitiesofsuchnascentimperfectentities。
  Butthevelocitiesofthevelocities,thesecond,third,fourth,andfifthvelocities,&;c。,exceed,ifImistakenot,allhumanunderstanding。
  Thefurtherthemindanalysethandpursueththesefugitiveideasthemoreitislostandbewildered;theobjects,atfirstfleetingandminute,soonvanishingoutofsight。Certainly,inanysense,asecondorthirdfluxionseemsanobscureMystery。Theincipientcelerityofanincipientcelerity,thenascentaugmentofanascentaugment,i。e。ofathingwhichhathnomagnitude:takeitinwhatlightyouplease,theclearconceptionofitwill,ifImistakenot,befoundimpossible;whetheritbesoornoIappealtothetrialofeverythinkingreader。Andifasecondfluxionbeinconceivable,whatarewetothinkofthird,fourth,fifthfluxions,andsoonwithoutend?
  5。Theforeignmathematiciansaresupposedbysome,evenofourown,toproceedinamannerlessaccurate,perhaps,andgeometrical,yetmoreintelligible。Insteadofflowingquantitiesandtheirfluxions,theyconsiderthevariablefinitequantitiesasincreasingordiminishingbythecontinualadditionorsubductionofinfinitelysmallquantities。
  Insteadofthevelocitieswherewithincrementsaregenerated,theyconsidertheincrementsordecrementsthemselves,whichtheycalldifferences,andwhicharesupposedtobeinfinitelysmall。Thedifferenceofalineisaninfinitelylittleline:ofaplaneaninfinitelylittleplane。Theysupposefinitequantitiestoconsistofpartsinfinitelylittle,andcurvestobepolygons,whereofthesidesareinfinitelylittle,whichbytheanglestheymakeonewithanotherdeterminethecurvityoftheline。Nowtoconceiveaquantityinfinitelysmall,thatis,infinitelylessthananysensibleorimaginablequantity,oranytheleastfinitemagnitude,is,Iconfess,abovemycapacity。Buttoconceiveapartofsuchinfinitelysmallquantitythatshallbestillinfinitelylessthanit,andconsequentlythoughmultipliedinfinitelyshallneverequaltheminutestfinitequantity,is,Isuspect,aninfinitedifficultytoanymanwhatsoever;andwillbeallowedsuchbythosewhocandidlysaywhattheythink;providedtheyreallythinkandreflect,anddonottakethingsupontrust。
  6。Andyetinthecalculusdifferentialis,whichmethodservestoallthesameintentsandendswiththatoffluxions,ourmodernanalystsarenotcontenttoconsideronlythedifferencesoffinitequantities:theyalsoconsiderthedifferencesofthosedifferences,andthedifferencesofthedifferencesofthefirstdifferences:andsoonadinfinitum。Thatis,theyconsiderquantitiesinfinitelylessthantheleastdiscerniblequantity;andothersinfinitelylessthanthoseinfinitelysmallones;andstillothersinfinitelylessthantheprecedinginfinitesimals,andsoonwithoutendorlimit。Insomuchthatwearetoadmitaninfinitesuccessionofinfinitesimals,eachinfinitelylessthantheforegoing,andinfinitelygreaterthanthefollowing。Astherearefirst,second,third,fourth,fifth&;c。fluxions,sotherearedifferences,first,second,thirdfourth,&;c。inaninfiniteprogressiontowardsnothing,whichyoustillapproachandneverarriveat。And(whichismoststrange)althoughyoushouldtakeamillionofmillionsoftheseinfinitesimals,eachwhereofissupposedinfinitelygreaterthansomeotherrealmagnitude,andaddthemtotheleastgivenquantity,itshallneverbethebigger。
  Forthisisoneofthemodestpostulataofourmodernmathematicians,andisacorner-stoneorground-workoftheirspeculations。
  7。Allthesepoints,Isay,aresupposedandbelievedbycertainrigorousexactorsofevidenceinreligion,menwhopretendtobelievenofurtherthantheycansee。Thatmenwhohavebeenconversantonlyaboutclearpointsshouldwithdifficultyadmitobscureonesmightnotseemaltogetherunaccountable。Buthewhocandigestasecondorthirdfluxion,asecondorthirddifference,neednot,methinks,besqueamishaboutanypointinDivinity。Thereisanaturalpresumptionthatmen’sfacultiesaremadealike。Itisonthissuppositionthattheyattempttoargueandconvinceoneanother。Whatthereforeshallappearevidentlyimpossibleandrepugnanttoonemaybepresumedthesametoanother。Butwithwhatappearanceofreasonshallanymanpresumetosaythatmysteriesmaynotbeobjectsoffaith,atthesametimethathehimselfadmitssuchobscuremysteriestobetheobjectofscience?
  8。Itmustindeedbeacknowledgedthemodernmathematiciansdonotconsiderthesepointsasmysteries,butasclearlyconceivedandmasteredbytheircomprehensiveminds。Theyscruplenottosaythatbythehelpofthesenewanalyticstheycanpenetrateintoinfinityitself:
  thattheycanevenextendtheirviewsbeyondinfinity:thattheirartcomprehendsnotonlyinfinite,butinfiniteofinfinite(astheyexpressit),oraninfinityofinfinites。But,notwithstandingalltheseassertionsandpretensions,itmaybejustlyquestionedwhether,asothermeninotherinquiriesareoftendeceivedbywordsorterms,sotheylikewisearenotwonderfullydeceivedanddeludedbytheirownpeculiarsigns,symbolsorspecies。Nothingiseasierthantodeviseexpressionsornotationsforfluxionsandinfinitesimalsofthefirst,second,third,fourth,andsubsequentorders,proceedinginthesameregularformwithoutendorlimit,,,&;c。,ordx,ddx,dddx,ddddx&;c。Theseexpressions,indeed,areclearanddistinct,andthemindfindsnodifficultyinconceivingthemtobecontinuedbeyondanyassignablebounds。Butifweremovetheveilandlookunderneath,if,layingasidetheexpressions,wesetourselvesattentivelytoconsiderthethingsthemselveswhicharesupposedtobeexpressedormarkedthereby,weshalldiscovermuchemptiness,darkness,andconfusion;nay,ifImistakenot,directimpossibilitiesandcontradictions。Whetherthisbethecaseorno,everythinkingreaderisentreatedtoexamineandjudgeforhimself。
  9。Havingconsideredtheobject,Iproceedtoconsidertheprinciplesofthisnewanalysisbymomentums,fluxions,orinfinitesimals;
  whereinifitshallappearthatyourcapitalpoints,uponwhichtherestaresupposedtodepend,includeerrorandfalsereasoning;itwillthenfollowthatyou,whoareatalosstoconductyourselves,cannotwithanydecencysetupforguidestoothermen。Themainpointinthemethodoffluxionsistoobtainthefluxionormomentumoftherectangleorproductoftwoindeterminatequantities。Inasmuchasfromthencearederivedrulesforobtainingthefluxionsofallotherproductsandpowers;bethecoefficientsortheindexeswhattheywill,integersorfractions,rationalorsurd。
  Now,thisfundamentalpointonewouldthinkshouldbeveryclearlymadeout,consideringhowmuchisbuiltuponit,andthatitsinfluenceextendsthroughoutthewholeanalysis。Butletthereaderjudge。Thisisgivenfordemonstration。[`NaturalisPhilosophiaePrincipiaMathematica,’lib。
  ii。,lem。2。]SupposetheproductorrectangleABincreasedbycontinualmotion:andthatthemomentaneousincrementsofthesidesAandBareaandb。WhenthesidesAandBweredeficient,orlesserbyonehalfoftheirmoments,therectanglewas,i。e。,。AndassoonasthesidesAandBareincreasedbytheothertwohalvesoftheirmoments,therectanglebecomesor。Fromthelatterrectanglesubducttheformer,andtheremainingdifferencewillbeaBbA。ThereforetheincrementoftherectanglegeneratedbytheentireincrementsaandbisaBbA。Q。E。D。ButitisplainthatthedirectandtruemethodtoobtainthemomentorincrementoftherectangleAB,istotakethesidesasincreasedbytheirwholeincrements,andsomultiplythemtogether,AabyBb,theproductwhereofABaBbAabistheaugmentedrectangle;
  whence,ifwesubductABtheremainderaBbAabwillbethetrueincrementoftherectangle,exceedingthatwhichwasobtainedbytheformerillegitimateandindirectmethodbythequantityab。
  Andthisholdsuniversallybethequantitiesaandbwhattheywill,bigorlittle,finiteorinfinitesimal,increments,moments,orvelocities。Norwillitavailtosaythatabisaquantityexceedingsmall:sincewearetoldthatinrebusmathematiciserroresquamminiminonsuntcontemnendi。
  10。Such[`Introd。adQuadraturamCurvarum。’]reasoningasthisfordemonstration,nothingbuttheobscurityofthesubjectcouldhaveencouragedorinducedthegreatauthorofthefluxionarymethodtoputuponhisfollowers,andnothingbutanimplicitdeferencetoauthoritycouldmovethemtoadmit。Thecaseindeedisdifficult。Therecanbenothingdonetillyouhavegotridofthequantityab。Inordertothisthenotionoffluxionsisshifted:itisplacedinvariouslights:pointswhichshouldbeasclearasfirstprinciplesarepuzzled;andtermswhichshouldbesteadilyusedareambiguous。But,notwithstandingallthisaddressandskill,thepointofgettingridofabcannotbeobtainedbylegitimatereasoning。Ifaman,bymethodsnotgeometricalordemonstrative,shallhavesatisfiedhimselfoftheusefulnessofcertainrules;whichheafterwardsshallproposetohisdisciplesforundoubtedtruths;whichheundertakestodemonstrateinasubtilemanner,andbythehelpofniceandintricatenotions;itisnothardtoconceivethatsuchhisdisciplesmay,tosavethemselvesthetroubleofthinking,beinclinedtoconfoundtheusefulnessofarulewiththecertaintyofatruth,andaccepttheonefortheother;especiallyiftheyaremenaccustomedrathertocomputethantothink;earnestrathertogoonfastandfar,thansolicitoustosetoutwarilyandseetheirwaydistinctly。
  11。Thepointsormerelimitsofnascentlinesareundoubtedlyequal,ashavingnomoremagnitudeonethananother,alimitassuchbeingnoquantity。Ifbyamomentumyoumeanmorethantheveryinitiallimit,itmustbeeitherafinitequantityoraninfinitesimal。
  Butallfinitequantitiesareexpresslyexcludedfromthenotionofamomentum。
  Thereforethemomentummustbeaninfinitesimal。And,indeed,thoughmuchartificehathbeenemployedtoescapeoravoidtheadmissionofquantitiesinfinitelysmall,yetitseemsineffectual。ForaughtIsee,youcanadmitnoquantityasamediumbetweenafinitequantityandnothing,withoutadmittinginfinitesimals。Anincrementgeneratedinafiniteparticleoftimeisitselfafiniteparticle;andcannotthereforebeamomentum。Youmustthereforetakeaninfinitesimalpartoftimewhereintogenerateyourmomentum。Itissaid,themagnitudeofmomentsisnotconsidered;andyetthesesamemomentsaresupposedtobedividedintoparts。Thisisnoteasytoconceive,nomorethanitiswhyweshouldtakequantitieslessthanAandBinordertoobtaintheincrementofAB,ofwhichproceedingitmustbeownedthefinalcauseormotiveisobvious;
  butitisnotsoobviousoreasytoexplainajustandlegitimatereasonforit,orshowittobegeometrical。
  12。Fromtheforegoingprinciple,sodemonstrated,thegeneralruleforfindingthefluxionofanypowerofaflowingquantityisderived。[`PhilosophiaeNaturalisPrincipiaMathematica,’lib。ii。,lem。2。]But,asthereseemstohavebeensomeinwardscrupleorconsciousnessofdefectintheforegoingdemonstration,andasthisfindingthefluxionofagivenpowerisapointofprimaryimportance,ithaththereforebeenjudgedpropertodemonstratethesameinadifferentmanner,independentoftheforegoingdemonstration。Butwhetherthisothermethodbemorelegitimateandconclusivethantheformer,Iproceednowtoexamine;andinordertheretoshallpremisethefollowinglemma:-`If,withaviewtodemonstrateanyproposition,acertainpointissupposed,byvirtueofwhichcertainotherpointsareattained;andsuchsupposedpointbeitselfafterwardsdestroyedorrejectedbyacontrarysupposition;inthatcase,alltheotherpointsattainedthereby,andconsequentthereupon,mustalsobedestroyedandrejected,soasfromthenceforwardtobenomoresupposedorappliedinthedemonstration。’Thisissoplainastoneednoproof。
  13。Now,theothermethodofobtainingaruletofindthefluxionofanypowerisasfollows。Letthequantityxflowuniformly,andbeitproposedtofindthefluxionof。
  Inthesametimethatxbyflowingbecomesxo,thepowerbecomes,i。e。bythemethodofinfiniteseriesandtheincrementsaretooneanotherasLetnowtheincrementsvanish,andtheirlastproportionwillbe1to。
  Butitshouldseemthatthisreasoningisnotfairorconclusive。Forwhenitissaid,lettheincrementsvanish,i。e。lettheincrementsbenothing,orlettherebenoincrements,theformersuppositionthattheincrementsweresomething,orthattherewereincrements,isdestroyed,andyetaconsequenceofthatsupposition,i。e。anexpressiongotbyvirtuethereof,isretained。Which,bytheforegoinglemma,isafalsewayofreasoning。Certainlywhenwesupposetheincrementstovanish,wemustsupposetheirproportions,theirexpressions,andeverythingelsederivedfromthesuppositionoftheirexistencetovanishwiththem。
  14。Tomakethispointplainer,Ishallunfoldthereasoning,andproposeitinafullerlighttoyourview。Itamountsthereforetothis,ormayinotherwordsbethusexpressed。Isupposethatthequantityxflows,andbyflowingisincreased,anditsincrementIcallo,sothatbyflowingitbecomesxo。Andasxincreaseth,itfollowsthateverypowerofxislikewiseincreasedinadueproportion。Thereforeasxbecomesxo,willbecome,thatis,accordingtothemethodofinfiniteseries,Andiffromthetwoaugmentedquantitieswesubducttherootandthepowerrespectively,weshallhaveremainingthetwoincrements,towit,whichincrements,beingbothdividedbythecommondivisoro,yieldthequotientswhicharethereforeexponentsoftheratiooftheincrements。HithertoIhavesupposedthatxflows,thatxhatharealincrement,thatoissomething。AndIhaveproceededallalongonthatsupposition,withoutwhichIshouldnothavebeenabletohavemadesomuchasonesinglestep。FromthatsuppositionitisthatIgetattheincrementof,thatIamabletocompareitwiththeincrementofx,andthatI
  findtheproportionbetweenthetwoincrements。Inowbegleavetomakeanewsuppositioncontrarytothefirst,i。e。Iwillsupposethatthereisnoincrementofx,orthatoisnothing;whichsecondsuppositiondestroysmyfirst,andisinconsistentwithit,andthereforewitheverythingthatsupposethit。Idoneverthelessbegleavetoretain,whichisanexpressionobtainedinvirtueofmyfirstsupposition,whichnecessarilypresupposedsuchsupposition,andwhichcouldnotbeobtainedwithoutit。Allwhichseemsamostinconsistentwayofarguing,andsuchaswouldnotbeallowedofinDivinity。
  15。Nothingisplainerthanthatnojustconclusioncanbedirectlydrawnfromtwoinconsistentsuppositions。Youmayindeedsupposeanythingpossible;butafterwardsyoumaynotsupposeanythingthatdestroyswhatyoufirstsupposed:or,ifyoudo,youmustbegindenovo。Ifthereforeyousupposethattheaugmentsvanish,i。e。thattherearenoaugments,youaretobeginagainandseewhatfollowsfromsuchsupposition。Butnothingwillfollowtoyourpurpose。Youcannotbythatmeanseverarriveatyourconclusion,orsucceedinwhatiscalledbythecelebratedauthor,theinvestigationofthefirstorlastproportionsofnascentandevanescentquantities,byinstitutingtheanalysisinfiniteones。Irepeatitagain:youareatlibertytomakeanypossiblesupposition:
  andyoumaydestroyonesuppositionbyanother:butthenyoumaynotretaintheconsequences,oranypartoftheconsequences,ofyourfirstsuppositionsodestroyed。Iadmitthatsignsmaybemadetodenoteeitheranythingornothing:andconsequentlythatintheoriginalnotationxo,omighthavesignifiedeitheranincrementornothing。Butthen,whichofthesesoeveryoumakeitsignify,youmustargueconsistentlywithsuchitssignification,andnotproceeduponadoublemeaning:whichtodowereamanifestsophism。Whetheryouargueinsymbolsorinwordstherulesofrightreasonarestillthesame。Norcanitbesupposedyouwillpleadaprivilegeinmathematicstobeexemptfromthem。
  16。Ifyouassumeatfirstaquantityincreasedbynothing,andintheexpressionxo,ostandsfornothing,uponthissupposition,asthereisnoincrementoftheroot,sotherewillbenoincrementofthepower;andconsequentlytherewillbenoneexceptthefirstofallthosemembersoftheseriesconstitutingthepowerofthebinomial;youwillthereforenevercomeatyourexpressionofafluxionlegitimatelybysuchmethod。Henceyouaredrivenintothefallaciouswayofproceedingtoacertainpointonthesuppositionofanincrement,andthenatonceshiftingyoursuppositiontothatofnoincrement。
  Theremayseemgreatskillindoingthisatacertainpointorperiod。
  Since,ifthissecondsuppositionhadbeenmadebeforethecommondivisionbyo,allhadvanishedatonce,andyoumusthavegotnothingbyyoursupposition。Whereas,bythisartificeoffirstdividingandthenchangingyoursupposition,youretain1and。
  But,notwithstandingallthisaddresstocoverit,thefallacyisstillthesame。For,whetheritbedonesoonerorlater,whenoncethesecondsuppositionorassumptionismade,inthesameinstanttheformerassumptionandallthatyougotbyitisdestroyed,andgoesouttogether。Andthisisuniversallytrue,bethesubjectwhatitwill,throughoutallthebranchesofhumanknowledge;inanyotherofwhich,Ibelieve,menwouldhardlyadmitsuchareasoningasthis,whichinmathematicsisacceptedfordemonstration。
  17。Itmaynotbeamisstoobservethatthemethodforfindingthefluxionofarectangleoftwoflowingquantities,asitissetforthintheTreatiseofQuadratures,differsfromtheabove-mentionedtakenfromthesecondbookofthePrinciples,andisineffectthesamewiththatusedinthecalculusdifferentialis。[`AnalysedesInfinimentPetits,’PartI。,prop。2。]Forthesupposingaquantityinfinitelydiminished,andthereforerejectingit,isineffecttherejectinganinfinitesimal;
  andindeeditrequiresamarvelloussharpnessofdiscernmenttobeabletodistinguishbetweenevanescentincrementsandinfinitesimaldifferences。
  Itmayperhapsbesaidthatthequantitybeinginfinitelydiminishedbecomesnothing,andsonothingisrejected。But,accordingtothereceivedprinciples,itisevidentthatnogeometricalquantitycanbyanydivisionorsubdivisionwhatsoeverbeexhausted,orreducedtonothing。Consideringthevariousartsanddevicesusedbythegreatauthorofthefluxionarymethod;inhowmanylightsheplacethhisfluxions;andinwhatdifferentwaysheattemptstodemonstratethesamepoint;onewouldbeinclinedtothink,hewashimselfsuspiciousofthejustnessofhisowndemonstrations,andthathewasnotenoughpleasedwithanynotionsteadilytoadheretoit。
  Thusmuchatleastisplain,thatheownedhimselfsatisfiedconcerningcertainpointswhichneverthelesshewouldnotundertaketodemonstratetoothers。[See`LettertoJohnCollins,’Nov。8,1676。]Whetherthissatisfactionarosefromtentativemethodsorinductions,whichhaveoftenbeenadmittedbymathematicians(forinstance,byDr。Wallis,inhisArithmeticofInfinites),iswhatIshallnotpretendtodetermine。But,whateverthecasemighthavebeenwithrespecttotheauthor,itappearsthathisfollowershaveshownthemselvesmoreeagerinapplyinghismethod,thanaccurateinexamininghisprinciples。
  18。Itiscurioustoobservewhatsubtletyandskillthisgreatgeniusemploystostrugglewithaninsuperabledifficulty;
  andthroughwhatlabyrinthsheendeavourstoescapethedoctrineofinfinitesimals;
  whichasitintrudesuponhimwhetherhewillorno,soitisadmittedandembracedbyotherswithouttheleastrepugnance;Leibnitzandhisfollowersintheircalculusdifferentialismakingnomannerofscruple,firsttosuppose,andsecondlytoreject,quantitiesinfinitelysmall;withwhatclearnessintheapprehensionandjustnessinthereasoning,anythinkingman,whoisnotprejudicedinfavourofthosethings,mayeasilydiscern。
  Thenotionorideaofaninfinitesimalquantity,asitisanobjectsimplyapprehendedbythemind,hathalreadybeenconsidered。[Sect。5
  and6。]Ishallnowonlyobserveastothemethodofgettingridofsuchquantities,thatitisdonewithouttheleastceremony。Asinfluxionsthepointoffirstimportance,andwhichpavesthewaytotherest,istofindthefluxionofaproductoftwoindeterminatequantities,sointhecalculusdifferentialis(whichmethodissupposedtohavebeenborrowedfromtheformerwithsomesmallalterations)themainpointistoobtainthedifferenceofsuchproduct。Nowtheruleforthisisgotbyrejectingtheproductorrectangleofthedifferences。Andingeneralitissupposedthatnoquantityisbiggerorlesserfortheadditionorsubductionofitsinfinitesimal:andthatconsequentlynoerrorcanarisefromsuchrejectionofinfinitesimals。
  19。Andyetitshouldseemthat,whatevererrorsareadmittedinthepremises,proportionalerrorsoughttobeapprehendedintheconclusion,betheyfiniteorinfinitesimal:andthatthereforetheofgeometryrequiresnothingshouldbeneglectedorrejected。Inanswertothisyouwillperhapssay,thattheconclusionsareaccuratelytrue,andthatthereforetheprinciplesandmethodsfromwhencetheyarederivedmustbesotoo。Butthisinvertedwayofdemonstratingyourprinciplesbyyourconclusions,asitwouldbepeculiartoyougentlemen,soitiscontrarytotherulesoflogic。Thetruthoftheconclusionwillnotproveeithertheformorthematterofasyllogismtobetrue;inasmuchastheillationmighthavebeenwrongorthepremisesfalse,andtheconclusionneverthelesstrue,thoughnotinvirtueofsuchillationorofsuchpremises。
  Isaythatineveryothersciencemenprovetheirconclusionsbytheirprinciples,andnottheirprinciplesbytheconclusions。Butifinyoursyoushouldallowyourselvesthisunnaturalwayofproceeding,theconsequencewouldbethatyoumusttakeupwithInduction,andbidadieutoDemonstration。
  Andifyousubmittothis,yourauthoritywillnolongerleadthewayinpointsofReasonandScience。
  20。Ihavenocontroversyaboutyourconclusions,butonlyaboutyourlogicandmethod:howyoudemonstrate?whatobjectsyouareconversantwith,andwhetheryouconceivethemclearly?whatprinciplesyouproceedupon;howsoundtheymaybe;andhowyouapplythem?ItmustberememberedthatIamnotconcernedaboutthetruthofyourtheorems,butonlyaboutthewayofcomingatthem;whetheritbelegitimateorillegitimate,clearorobscure,scientificortentative。Topreventallpossibilityofyourmistakingme,Ibegleavetorepeatandinsist,thatIconsiderthegeometricalanalystasalogician,i。e。sofarforthashereasonsandargues;andhismathematicalconclusions,notinthemselves,butintheirpremises;notastrueorfalse,usefulorinsignificant,butasderivedfromsuchprinciples,andbysuchinferences。And,forasmuchasitmayperhapsseemanunaccountableparadoxthatmathematiciansshoulddeducetruepropositionsfromfalseprinciples,berightintheconclusionandyeterrinthepremises;Ishallendeavourparticularlytoexplainwhythismaycometopass,andshowhowerrormaybringforthtruth,thoughitcannotbringforthscience。
  21。Inorderthereforetoclearupthispoint,wewillsupposeforinstancethatatangentistobedrawntoaparabola,andexaminetheprogressofthisaffairasitisperformedbyinfinitesimaldifferences。LetABbeacurve,theabscissaAP=x,theordinatePB=y,thedifferenceoftheabscissaPM=dx,thedifferenceoftheordinateRN=dy。Now,bysupposingthecurvetobeapolygon,andconsequentlyBN,theincrementordifferenceofthecurvetobeastraightlinecoincidentwiththetangent,andthedifferentialtriangleBRNtobesimilartothetriangleTPB,thesubtangentPTisfoundafourthproportionaltoRN:RB:PB:thatis,tody:dx:y。HencethesubtangentwillbeButhereinthereisanerrorarisingfromtheaforementionedfalsesupposition,whencethevalueofPTcomesoutgreaterthanthetruth:forinrealityitisnotthetriangleRNBbutRLBwhichissimilartoPBT,andtherefore(insteadofRN)RLshouldhavebeenthefirsttermoftheproportion,i。e。RNNL,i。e。dyz:whencethetrueexpressionforthesubtangentshouldhavebeenTherewasthereforeanerrorofdefectinmakingdythedivisor;
  whicherrorwasequaltoz,i。e。NLthelinecomprehendedbetweenthecurveandthetangent。Nowbythenatureofthecurveyy=px,supposingptobetheparameter,whencebytheruleofdifferences2ydy=pdxandButifyoumultiplyydybyitself,andretainthewholeproductwithoutrejectingthesquareofthedifference,itwillthencomeout,bysubstitutingtheaugmentedquantitiesintheequationofthecurve,thattruly。Therewasthereforeanerrorofexcessinmakingwhichfollowedfromtheerroneousruleofdifferences。AndthemeasureofthisseconderrorisThereforethetwoerrorsbeingequalandcontrarydestroyeachother;thefirsterrorofdefectbeingcorrectedbyaseconderrorofexcess。
  22。Ifyouhadcommittedonlyoneerror,youwouldnothavecomeatatruesolutionoftheproblem。Butbyvirtueofatwofoldmistakeyouarrive,thoughnotatscience,yetattruth。Forscienceitcannotbecalled,whenyouproceedblindfold,andarriveatthetruthnotknowinghoworbywhatmeans。TodemonstratethatzisequaltoletBRordxbemandRNordyben。
  Bythethirty-thirdpropositionofthefirstbookoftheConicsofApollonius,andfromsimilartriangles,as2xtoysoismtoLikewisefromthenatureoftheparabolayy2ynnn=xpmp,and2ynnn=mp:whereforeandbecauseyy=px,willbeequaltox。Thereforesubstitutingthesevaluesinsteadofmandxweshallhavei。e。whichbeingreducedgives23。Now,Iobserve,inthefirstplace,thattheconclusioncomesoutright,notbecausetherejectedsquareofdywasinfinitelysmall,butbecausethiserrorwascompensatedbyanothercontraryandequalerror。Iobserve,inthesecondplace,thatwhateverisrejected,beiteverysosmall,ifitbereal,andconsequentlymakesarealerrorinthepremises,itwillproduceaproportionalrealerrorintheconclusion。
  Yourtheoremsthereforecannotbeaccuratelytrue,noryourproblemsaccuratelysolved,invirtueofpremiseswhichthemselvesarenotaccurate;itbeingaruleinlogicthatconclusiosequiturpartemdebiliorem。Therefore,Iobserve,inthethirdplace,thatwhentheconclusionisevidentandthepremisesobscure,ortheconclusionaccurateandthepremisesinaccurate,wemaysafelypronouncethatsuchconclusionisneitherevidentnoraccurate,invirtueofthoseobscureinaccuratepremisesorprinciples;butinvirtueofsomeotherprinciples,whichperhapsthedemonstratorhimselfneverkneworthoughtof。Iobserve,inthelastplace,thatincasethedifferencesaresupposedfinitequantitieseversogreat,theconclusionwillneverthelesscomeoutthesame:inasmuchastherejectedquantitiesarelegitimatelythrownout,notfortheirsmallness,butforanotherreason,towit,becauseofcontraryerrors,which,destroyingeachother,do,uponthewhole,causethatnothingisreally,thoughsomethingis,apparently,thrownout。Andthisreasonholdsequallywithrespecttoquantitiesfiniteaswellasinfinitesimal,greataswellassmall,afootorayardlongaswellastheminutestincrement。
  24。Forthefullerillustrationofthispoint,Ishallconsideritinanotherlight,andproceedinginfinitequantitiestotheconclusion,Ishallonlythenmakeuseofoneinfinitesimal。SupposethestraightlineMQcutsthecurveATinthepointsRandS。SupposeLRatangentatthepointR,ANtheabscissa,NRandOSordinates。LetANbeproducedtoO,andRPbedrawnparalleltoNO。
  SupposeAN=x,NR=y,NO=v,PS=z,thesubsecantMN=s。Lettheequationy=xxexpressthenatureofthecurve:andsupposingyandxincreasedbytheirfiniteincrementswegetyz=xx2xvvv;whencetheformerequationbeingsubducted,thereremainsz=2xvvv。Andbyreasonofsimilartriangleswhereinifforyandzwesubstitutetheirvalues,wegetAndsupposingNOtobeinfinitelydiminished,thesubsecantNMwillinthatcasecoincidewiththesubtangentNL,andvasaninfinitesimalmayberejected,whenceitfollowsthatwhichisthetruevalueofthesubtangent。And,sincethiswasobtainedbyoneonlyerror,i。e。byonceejectingoneonlyinfinitesimal,itshouldseem,contrarytowhathathbeensaid,thataninfinitesimalquantityordifferencemaybeneglectedorthrownaway,andtheconclusionneverthelessbeaccuratelytrue,althoughtherewasnodoublemistakeorrectifyingofoneerrorbyanother,asinthefirstcase。But,ifthispointbethoroughlyconsidered,weshallfindthereisevenhereadoublemistake,andthatonecompensatesorrectifiestheother。For,inthefirstplace,itwassupposedthatwhenNOisinfinitelydiminishedorbecomesaninfinitesimalthenthesubsecantNMbecomesequaltothesubtangentNL。Butthisisaplainmistake;foritisevidentthatasasecantcannotbeatangent,soasubsecantcannotbeasubtangent。
  Bethedifferenceeversosmall,yetstillthereisadifference。And,ifNObeinfinitelysmall,therewilleventhenbeaninfinitelysmalldifferencebetweenNMandNL。ThereforeNMorswastoolittleforyoursupposition(whenyousupposeditequaltoNL);andthiserrorwascompensatedbyaseconderrorinthrowingoutv,whichlasterrormadesbiggerthanitstruevalue,andinlieuthereofgavethevalueofthesubtangent。Thisisthetruestateofthecase,howeveritmaybedisguised。Andtothisinrealityitamounts,andisatbottomthesamething,ifweshouldpretendtofindthesubtangentbyhavingfirstfound,fromtheequationofthecurveandsimilartriangles,ageneralexpressionforallsubsecants,andthenreducingthesubtangentunderthisgeneralrule,byconsideringitasthesubsecantwhenvvanishesorbecomesnothing。
  25。UponthewholeIobserve,First,thatvcanneverbenothing,solongasthereisasecant。Secondly,thatthesamelinecannotbebothtangentandsecant。Thirdly,thatwhenvandNO[Seetheforegoingfigure]vanisheth,PSandSRdoalsovanish,andwiththemtheproportionalityofthesimilartriangles。
  Consequentlythewholeexpression,whichwasobtainedbymeansthereofandgroundedthereupon,vanishethwhenvvanisheth。Fourthly,thatthemethodforfindingsecantsortheexpressionofsecants,beiteversogeneral,cannotincommonsenseextendanyfartherthantoallsecantswhatsoever:and,asitnecessarilysupposedsimilartriangles,itcannotbesupposedtotakeplacewheretherearenotsimilartriangles。Fifthly,thatthesubsecantwillalwaysbelessthanthesubtangent,andcannevercoincidewithit;whichcoincidencetosupposewouldbeabsurd;foritwouldbesupposingthesamelineatthesametimetocutandnottocutanothergivenline;whichisamanifestcontradiction,suchassubvertsthehypothesisandgivesademonstrationofitsfalsehood。Sixthly,ifthisbenotadmitted,Idemandareasonwhyanyotherapagogicaldemonstration,ordemonstrationadabsurdumshouldbeadmittedingeometryratherthanthis:orthatsomerealdifferencebeassignedbetweenthisandothersassuch。Seventhly,IobservethatitissophisticaltosupposeNOorRP,PS,andSRtobefinitereallinesinordertoformthetriangle,RPS,inordertoobtainproportionsbysimilartriangles;andafterwardstosupposetherearenosuchlines,norconsequentlysimilartriangles,andneverthelesstoretaintheconsequenceofthefirstsupposition,aftersuchsuppositionhathbeendestroyedbyacontraryone。
  Eighthly,thatalthough,inthepresentcase,byinconsistentsuppositionstruthmaybeobtained,yetsuchtruthisnotdemonstrated:thatsuchmethodisnotconformabletotherulesoflogicandrightreason:that,howeverusefulitmaybe,itmustbeconsideredonlyasapresumption,asaknack,anart,ratheranartifice,butnotascientificdemonstration。
  26。Thedoctrinepremisedmaybefurtherillustratedbythefollowingsimpleandeasycase,whereinIshallproceedbyevanescentincrements。SupposeAB=x,BC=y,BD=o,andthatxxisequaltotheareaABC:itisproposedtofindtheordinateyorBC。Whenxbyflowingbecomesxo,thenxxbecomesxx2xooo:
  andtheareaABCbecomesADH,andtheincrementofxxwillbeequaltoBDHC,theincrementofthearea,i。e。toBCFDCFH。AndifwesupposethecurvilinearspaceCFHtobeqoo,then2xooo=yo=qoo,whichdividedbyogive2xo=yqo。
  And,supposingotovanish,2x=y,inwhichcaseACHwillbeastraightline,andtheareasABC,CFHtriangles。Nowwithregardtothisreasoning,ithathbeenalreadyremarked,[Sect。12and13supra。]thatitisnotlegitimateorlogicaltosupposeotovanish,i。e。tobenothing,i。e。thatthereisnoincrement,unlesswerejectatthesametimewiththeincrementitselfeveryconsequenceofsuchincrement,i。e。whatsoevercouldnotbeobtainedbysupposingsuchincrement。Itmustneverthelessbeacknowledgedthattheproblemisrightlysolved,andtheconclusiontrue,towhichweareledbythismethod。Itwillthereforebeasked,howcomesittopassthatthethrowingoutoisattendedwithnoerrorintheconclusion?
  Ianswer,thetruereasonhereofisplainlythis:becauseqbeingunit,qoisequaltoo:andtherefore2xo-qo=y=2x,theequalquantitiesqoandobeingdestroyedbycontrarysigns。