我的叔父带我去拜访那位有名的物理学家丁达尔。在他们谈话的时候,我只得自己寻些消遣。我拿了两个手杖,每个上边都有一个曲把。我使这两个手杖在我的手指上保持平衡,使它们向相反的方向倾斜,因此在一点上交叉。丁达尔回过头来问我在做什么。我回答说,我想找一个实用的办法,来推定重力的中心,因为每一个手杖的重力中心一定是在我手指以下的垂直线上,因此也就是在手杖交叉的那一点上。大概是因为我说了这么一句话,丁达尔就把他的一本书《水的形式》送给了我。在那个时候,我希望一切科学都象数学那样严正,包含心理学在内。力的平行四边形证明,一个物体同时有两个力量加于其上,是要走中间的一条路线,偏于力量大的那一方面。我希望也许有一个类似的”动机器行四边形“。这是一种糊涂思想,因为如果一个人来到一个岔路,又想走这条路,又想走那条路,他并不到两条路中间的地里走。
那时候科学还没有发现”有或无原理“。这个原理的重要性是到本世纪才发现的。我在年轻的时候认为,如果两个引力背道而驰,结果是导致民党式的妥协。后来才发现,往往二者之一完全占了优势。这给了约翰逊博士以理由,在他看来,第一个民党党员是魔鬼,不是上帝。
我对于数学应用上的兴趣逐渐被对于构成数学的基础的那些原理的兴趣所代替。这个转变是由于一种愿望,要把数学上的怀疑主义驳倒。有很多要我接受的论证显然是错误的。
我读了所有我能找到的好象能加强数学上的信仰的书。这种研究把我从应用数学慢慢引得越来越远,越来越引到抽象的领域里去,最后引到了数理逻辑里去。后来我有一种想法,以为数学基本上不是一个了解和操纵感觉世界的工具,而是一个抽象的体系,这个体系是存于柏拉图哲学意义的天上,只有它的一种不纯净和堕落的形式才来到感觉的世界。在本世纪初年,我的一般的看法是一种极深的避世的思想。我厌恶这个实在的世界,想在一个超时间的世界里求隐遁,在那里是无变迁,无衰退,也没有前进那个鬼火。虽然这种看法很严肃,很诚挚,我却有时候用一种不郑重的方法来表示。我的内兄罗干·批扫·斯密有一套问题,他常拿来问人。其中有一个问题是:”你特别喜欢什么?“我的回答是:”数学和海洋、神学和纹章学,我之所以喜欢前两个是因为它们不近人情,喜欢后两个是因为它们荒唐无稽。“可是我的回答之所以实际上采取了这个形式,却是为了得到发问的人的赞许。
那时我对于数学的态度表现在我的一篇文章里,题目是《数学的研究》,发表在一九○七年的《新季刊》里,又重印在《哲学论文》里(1910)。引证这篇文章里的几段可以说明我那时的意见:
数学,如果正确地看它,不但拥有真理,而且也具有至高的美,正象雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完满的境地。一种真实的喜悦的精神,一种精神上的发扬,一种觉得高于人的意识(这些是至善的标准)能够在诗里得到,也确能在数学里得到。数学里最好的东西不止应该当做一种工作来学,而且也应该把它化为日常思想的一部分,要用反复的鼓励常常使它显现在心里。对大多数人来说,现实生活是一种漫长的、居第二位的东西,是理想与可能之间不断的妥协;但是纯理性的世界不知道妥协、实际的限制和创造活动的障碍为何物。(创造的活动把对于尽美尽善的热烈的希求具体表现在壮丽的大厦里,一切的伟业都是起自对于尽善的向往希求)。远远离开人的情感,甚至远远离开自然的可怜的事实,世世代代逐渐创造了一个秩序井然的宇宙。纯正的思想在这个宇宙里好象是住在自己的家里。至少我们的一种更高尚的冲动能够在这个宇宙里逃避现实世界的凄清的流浪。
第83章