首页 >出版文学> 数学原理>第25章

第25章

我从皮亚诺听到的第二个重要的进步是,由一个项所成的一个类和那个项并不相等。例如,“地球的卫星”是一个类,它只有一个项,就是,月亮。但是把一个类和它仅有的项等同起来,就在集合的逻辑里引起完全无法解决的问题来,因此在数的逻辑里也引起完全无法解决的问题来,因为数所适用的是集合。一经指出,就很容易明白把“地球的卫星”和月亮等同是不适当的。如果发现地球有第二个卫星,“地球的卫星”这个短语不会改变它的意义;对于一个懂天文学却不知道地球有一个卫星的人,这个短语也不会缺乏意义。从另一方面说,如果我们可以把“月亮”当做一个名称,关于月亮的命题,除了对于那些晓得月亮的人以外是没有意义的。对于不晓得月亮的人如果不解释“月亮”就等于“地球唯一的卫星”这个短语,“月亮”不过是一个没有意义的声音罢了;
如果这个解释被代替了,关于月亮的命题就没有我们说:“今天晚上月亮亮”的时候在你和我看来所具的意义。一个人不用描写,他是把概念连结到一起,不是和感觉世界直接相接触。一个人说:“月亮亮”,他却是和感觉世界直接相接触。关于这一点,我们现在所讨论的这个区别,和前面我们所说“苏格拉底是不免于死的”跟“一切希腊人是不免于死的”之间的分别,有些相似。
读者说不定会以为,上边的那些区别不过是学究的装腔做势,卖弄学问。我现在不能不想法说明并非如此。
弗雷格以前的作者都把算术的哲理想错了。他们这些人所犯的错误是一个很自然的错误。他们以为数目是由数数儿得来的。他们陷入了无法解决的困境,是因为可以算做一个的东西,也一样可以算做多。请以这样一个问题为例:“英国有多少足球俱乐部?”在回答这一个问题的时候,你把每一个俱乐部当做一,但是你也一样可以问:“某某足球俱乐部有多少会员?”那样,你就把这个俱乐部当做多了。而且,如果甲先生是这些俱乐部之一的一个会员,虽然他原先算做一,你这样问也一样正当:“甲先生是由多少分子而成的?”那么,甲先生就算是多。所以,显而易见,从计算的观点来说,使什么东西之为一,不是这件东西的物质构造,而是“这是什么的一个具体例子?”这个问题。你从计算所得来的数目是某种集体的数目。在你数这个集体以前,它无论什么数目都有。只是按某种东西的许多实例来说,这个集体才是多。这个集体又是另一种东西的一个实例,在数数目的时候是按实例来说算做一。这样我们就不得不面向这一个问题:“一个集体是什么?”和“一个实例是什么?”若是不用命题函项,二者都无法理解。一个命题函项就是一个式子,其中包含一个变项,一旦给这个变项定一个值,这个式子就成了一个命题。举例来说,“x是一个人”是一个命题函项。如果我们用苏格拉底或柏拉图或任何别的人来代替x,我们就得到一个命题。我们也可以用一个什么不是人的东西来代替x,我们仍然得到一个命题,虽然按这一个例子来说这个命题是不能成立的。一个命题函项仅是一个式子而已。它本身并不能表示任何东西。它可以作一句话的一部分,这句话确有所断定,能成立或不能成立:“x是一个使徒”是没有意义的。但是“x有十二个值,因此’x是一个使徒‘是能成立的”是一个完整的句子。类似的话也可以用于实例这个概念。我们把某种东西当做一个实例的时候,我们是把它当做一个命题函项里一个变项的一个可能有的值。如果我说:“苏格拉底是人的一个实例”,我的意思是说,苏格拉底是x的一个值,因此“x是一个人”是能成立的。经院哲学家有一句格言,意思是说,一和存在是同义语。这句格言只要大家信以为真,就没有法子把1的意义弄明确。事实的真相是,存在是一个没有用处的字。而且,误用这个字的人应用这个字所应用到的那种事物既可以是一,也往往可以是多。·一不是事物的一个特征,而是某些命题函项的一个特征,就是说,有以下这种特性的那些命题函项:有一个x使这个函项为真,而且这个x是这样,如果y使这个函项为真,y就和x是同一的。这是一元函数的定义。1这个数目是一元的特性,这种特性是为某些函数所具有的。同样,零函数是一个对于x的所有的值来说都是错误的函数,成为一个零函数,其特性是0。
关于数的那些旧的学说,到0和1以上,总是遇到困难。
最初使我得到很深的印象的是皮亚诺对付这些困难的本领。