首页 >出版文学> 科学史及与哲学和宗教的关系(下)>第48章
薛定谔的理论必须联系电子的实验来考虑。这些实验,如德布罗意的理论所表示的,证明一个运动的电子伴随有一系列的波。汤姆生的微粒。起初被看做是漫无结构的质点,继后被认为是电子,一个阴电的简单单位,不管这具有什么意义。但到了1923年和1927年,戴维森(Davisson)与耿斯曼(Kunsman)以及戴维森与革末(Germer,当时在美国工作)先后使运动缓慢的电子自晶体的表面反射,而发现它们具有波动系统的衍射性质。同年稍后,J.J.汤姆生爵士的儿子乔治·汤姆生以一电子束通过一个异常之薄的,比最薄的金箔还薄的金属片。我们知道,质点流会在薄片后面的底片上产生一块模糊的影家,但波长与薄片厚度相近的波,会产生明暗相间的圆环,与光线通过薄玻璃或肥皂膜所产生的衍射花样相似。事实上,乔治·汤姆生所得到的确是这种圆环。这说明,运动的电子伴有一列的波,这些波的波长仅是可见光的波长的百万分之一,而与有相当贯穿力的X射线的波长相近。
根据理论,如果电子伴有一列的波,则电子必须和这些波作协调的振动。因此,电子也必有它的结构,它也绝不再是物质的成电的最小单位了,即令在实验中也应该是这样。于是人们开始想象还有更小的部分。数学的研究表明,电子的能量与波的频率成正比,而电子的动量与波长的乘积为一常数。由于原子中仅有某些波长与频率,所以,电子的动量也只能有某些数值,并且不是连续地增加,而只能突跃地增加。这个非连续性的表现使我们又回复到量子论。
要解释乔治·汤姆生的实验,就需要假定电子具有双重性质:既是质点(或电荷),又是波列。上面说过,薛定谔走得更远,而认为电子是一种波的系统。波的性质是不确定的。波必须符合某些方程式,但可能不具有机械式的运动。而这些方程式可能只符合概率的交替,这一项在正常波里,度量位移量,可以给出电子出现在某一给定点的概率(机遇)。
于是在原子被分为电子之后三分之一个世纪,电子又被分为一未知的辐射源或一无形体的波动系统了。昔日的坚硬而有质量的质点的最后一点痕迹已经消失,物理学的基本概念似乎已经归结为数学方程式了。实验物理学家,特别是英国人,对于这种抽象概念很是感觉不安,企图设计一种原子模型,而从机械或电的角度去表达这些方程式的意义。但牛顿早已见到,力学的最后基础绝不是机械的。
物理学的新时代(2)
相对论
光线传播需要时间,是丹麦天文学家勒麦(Olaus
Romer)在1676年发现的。勒麦发现木星的一个卫星两次被食之间所经历的时间,在地球背木星而行时较长,在地球向木星而行时较短。他由此估计光速为每秒192,000英里。
五十年后,英国皇室天文学家布莱德雷从恒星的光行差求得与此一致的结果。从地球轨道面上的远星看地球,好象每年左右摆动一次,在相继的两个半年中,它的摆动方向是相反的。如果这颗星射出的光线击中地球,那么这条光线的瞄准方向必须在地球的前面少许,正如射击飞鸟必须瞄准飞鸟的前面一样。所以,如果星光现在射到地球真正位置的右边,则六个月以后便会射到它的左边。这意味着:我们在不同的时季所看见的远星射来的光线,不是互相平行的,在一年内看见虽好象在空间往返运动。从这个表面的运动,可以计算光速与地球在其轨道运行的速度之比。
斐索(Fizeau)在1849年首先对光经过地球上的短距离的速度作了测量。他将一束光通过齿轮上两齿间的凹处,再于三、四英里之外,用反光镜将光反射回来。如果齿轮不移动,则反射回来的光束通过轮上的同一凹处,可在对面看到。但如果将齿轮急速转动并调节其速度,则最后可找到一个速度,使射回的光束恰被下一个齿轮所遮住。齿轮旋转这个小角度所需的时间,显然即是光束往返于齿轮与反光镜之间所经历的时间。
弗种设计了一个更好的方法。使从S缝(图14)射出的光束略成会聚的形式,然后在平面镜R上反射,而聚焦于凹面镜M上。这束光由M循原点射回。如果R是静止的,则S缝的影象将形成于S缝的本身上。然后以已知的速度使R急速转动,当光线往返于RM的距离时,R镜已经转过了一个小的角度,因此光的回程RS’与RS不复叠合,而转动了二倍于R镜所转的角度。于是测量SS’间的距离,便可计算光往返于RM间所需的时间。
光速最新的测量结果,比从前测量的稍小,即在真空内,为每秒186,300英里或2.998×1010厘米,或在1/1000的误差内取为3×1010厘米。
如果的确有光以太那样性质的东西,那么由于它对于通过它的光要产生影响,显然应该可以测定其运动。如果地球在以太中运动,而不扰动它,则地球与以太之间必有相对运动。那么光随以太顺行时,其速度必较其反以太逆行时为大;而总计起来,它往返横过以太流时,也当较其一次顺流、一次逆流时为大。好象游泳一样,往返对岸一次,必较顺流、逆流同游相等距离的情形为速。
这就是迈克尔逊(Michelson)和莫利(Morley)在1887年所作的有名实验的要点。他们将一块石头浮于水银之内,然后将仪器装置在石头上面,以防振动。光束SA(图比)行至玻璃片A时,一部分为其所反射,一部分透射过去。这两部分光在B和D处又为B与D两镜所反射。如果AB=AD,则两道光的行程也相等,而在E处的望远镜内必可察见有干涉效应。今若没想地球朝SAD方向运动,而不拖曳以太同行,那么以太将流过实验室,也如风之流过树林,于是将使光经过ABA与ADA两行程的时间发生差异,而所得的干涉条纹,将和以太相对静止时不在同一位置。今若将这仪器转过一个直角,则AB成为运动的方向,而AD和它垂直,这时,干涉条纹应向相反方向移动。移动的总量为以上所说的两倍。