1902年,卢瑟福与索迪发现铁也有相同的效应,即在为氨所沉淀时,钍的活动性,即消失其一部分。滤液蒸干,则产生放射性极强的渣滓。但经过一月,渣滓的活动性丧失,让则恢复其原有的活动性。这种活性的渣滓,钍-X,证明是另外一种化学物质,因为它只能为氨全部分开,别种试剂虽能使钍沉淀,但不能使它与钍-X分离。因此当时断定这些X化合物(未知的化合物)当是另外的个体,不断地由母体发出,而渐渐丧失其活性。
1899年,卢瑟福发现从钍发出的辐射变异无常,尤其易为吹过放射物质表面的空气缓流所影响。他认为这种效应是由于有一种物质放射出的缘故,这种物质的性质好象一种有暂时放射性的重气体。这就是当时所谓的“射气”。这种射气必须与上述以高速度依直线进行的辐射明显分开。射气慢慢地弥散到大气里去,好象挥发性液体的蒸气一般。它的作用象是直行辐射的独立源泉,但随时间的进展,其活动性就变得衰弱起来。镭和锕发出相似的射气,但铀和钍则否。镭射气和氖与氩相似,是一种惰性气体,现在叫做氡。
放射物质所发出的射气为量极小。1904年,拉姆赛与索迪从几分克溴化镭得到一个很小的射气泡。在一般情形下,其量之微,远不足以影响抽空器内的压力;除利用其放射性侦察它之外,也不能用其他方法去侦察它。普通所得到的,是它与大量空气的混合物,只能和空气同时从一器输入他器。
1899年,居里夫妇发现如将一棒暴露在镭射气里,则棒自身也获得放射性质。同年,卢瑟福于钍也得着相同的结果,而且进行了详细的研究。如果将棒自盛有射气的器内取出,而塞入检验简内,则此棒可使简内的气体电离。如将暴露于钍射气而得到放射性的铂丝,用硝酸洗涤,铂丝的放射性不受损失。可是如果用硫酸或盐酸洗涤,其放射性就差不多全部丧失。将酸蒸干则得含有放射性的渣滓。这些结果,表明铂丝的放射性是由于积有某种新的放射物的缘故,这种放射物与各种化学试剂有其一定的反应。这种新的放射物当是它由之形成的那种射气分裂的产物。
卢瑟福与索迪在1902年研究了钍-X放射性的衰变率,而获得重要的发现;即在每一段短时间内的变率与这段时间开始时的放射物的强度成比例。铀-X也有类似的现象。其过程有如图12所示。这与化合物按每个分子分解为比较简单的物体时,在量上的减少遵循同一定律。但当两个或多个分子互相反应引起化学变化时,两者的定律便不相同了(见245页)。
1903年,居里与拉波尔德(Laborde)注意到一个奇特的事实:镭的化合物不断地发热。他们从实验的结果算出每克纯镭每小时可发热约100卡。以后的结果证明一克镭与其产物平衡时,每小时发热135卡。这种热能的发出率,不论将镭盐放在高温或液体空气的低温下,都不改变,甚至在液体氢的温度下也不至减小。
卢瑟福认为热能的发射与放射性有关。丧失了射气的镭,如以电的方法测量,其放射性的恢复与其发热本领的恢复保持同一速率,而其分离出来的射气发热量的变化,也与其放射性的变化相应。放射物的电效应主要是由于a射线。而其热效应也主要决定于α质点的发射。在上述的每小时135卡中,只有5卡来自β射线,6卡来自γ辐射。α与β射线的热效应显然得自射出质点的动能。
由于发现镭的化合物不断发热,人们进行了许多探索,力求解释这个好像永不枯竭的能量的泉源,人们的注意力也集中于放射问题本身。
需要解释的事实可以总结为以下几点:(1)什么时候有放射性即有化学变化出现,什么时候就有新体出现;(2)这种化学变化是单质点的分离,而不是化合;(3)放射性与放射元素(不论其是独立的或化合的)的质量成比例,因此分离的质点不是分子而是原子;(4)其所放出的能量是已知的最猛烈的化学反应的万千倍。
1903年,卢瑟福与索迪根据他们对于射气与其遗留的放射物的实验结果,提出一个学说来解释所有已知的事实。这个学说就是:放射性是基本原子的爆炸分裂造成的。在数百万个原子中,这里和那里忽然有一个爆裂,射出一个α质点,或一个β质点和一个γ射线,所遗留下来的部分就成为另一不同的原子。如果射出的是一个α质点,这个新原素的原子量将有所减少,减少的数值是一个氦原子的原子量的四个单位。
现在把最初制订的镭族的系谱列表于下(根据最近的研究,这个系谱已经有所不同)。这个系谱从铀开始,这是一个重元素,原子量为238,原子序数为92,这个数字,以后还要说明,是原子外部的电子数。镭族系谱列如下表:
铀Ⅰ
.5×109年
α
铀
.5日
β,γ
铀
.14分
β,γ
铀Ⅱ
年
α
锾
.6×
α
镭
年
α
镭射气
.82日
α
镭
.05分
α
镭
.8分
β,γ
镭
.7分
α,β,γ
镭C’
-6秒
α
镭
年
β,γ
镭
日
β,γ
镭F(钋)
日
α
铅
第43章