starting-point?Ashasbeensaid,therightangleisthoughttobe
priortotheacute,andtheacutetotheright,andeachisone。
Accordinglytheymake1thestarting-pointinbothways。Butthisis
impossible。Fortheuniversalisoneasformorsubstance,whilethe
elementisoneasapartorasmatter。Foreachofthetwoisina
senseone-intrutheachofthetwounitsexistspotentiallyat
leastifthenumberisaunityandnotlikeaheap,i。e。if
differentnumbersconsistofdifferentiatedunits,astheysay,but
notincompletereality;andthecauseoftheerrortheyfellinto
isthattheywereconductingtheirinquiryatthesametimefromthe
standpointofmathematicsandfromthatofuniversaldefinitions,so
that1fromtheformerstandpointtheytreatedunity,theirfirst
principle,asapoint;fortheunitisapointwithoutposition。
Theyputthingstogetheroutofthesmallestparts,assomeothers
alsohavedone。Thereforetheunitbecomesthematterofnumbersand
atthesametimepriorto2;andagainposterior,2beingtreatedasa
whole,aunity,andaform。But2becausetheywereseekingthe
universaltheytreatedtheunitywhichcanbepredicatedofa
number,asinthissensealsoapartofthenumber。Butthese
characteristicscannotbelongatthesametimetothesamething。
Ifthe1-itselfmustbeunitaryforitdiffersinnothingfrom
other1’sexceptthatitisthestarting-point,andthe2is
divisiblebuttheunitisnot,theunitmustbelikerthe1-itself
thanthe2is。Butiftheunitislikerit,itmustbelikertothe
unitthantothe2;thereforeeachoftheunitsin2mustbeprior
tothe2。Buttheydenythis;atleasttheygeneratethe2first。
Again,ifthe2-itselfisaunityandthe3-itselfisonealso,both
forma2。Fromwhat,then,isthis2produced?
Sincethereisnotcontactinnumbers,butsuccession,viz。
betweentheunitsbetweenwhichthereisnothing,e。g。betweenthose
in2orin3onemightaskwhetherthesesucceedthe1-itselfor
not,andwhether,ofthetermsthatsucceedit,2oreitherofthe
unitsin2isprior。
Similardifficultiesoccurwithregardtotheclassesofthings
posteriortonumber,-theline,theplane,andthesolid。Forsome
constructtheseoutofthespeciesofthe’greatandsmall’;e。g。
linesfromthe’longandshort’,planesfromthe’broadandnarrow’,
massesfromthe’deepandshallow’;whicharespeciesofthe’great
andsmall’。Andtheoriginativeprincipleofsuchthingswhichanswers
tothe1differentthinkersdescribeindifferentways,Andinthese
alsotheimpossibilities,thefictions,andthecontradictionsof
allprobabilityareseentobeinnumerable。Forigeometrical
classesareseveredfromoneanother,unlesstheprinciplesofthese
areimpliedinoneanotherinsuchawaythatthe’broadandnarrow’
isalso’longandshort’butifthisisso,theplanewillbeline
andthesolidaplane;again,howwillanglesandfiguresandsuch
thingsbeexplained?。Andiithesamehappensasinregardto
number;for’longandshort’,&c。,areattributesofmagnitude,but
magnitudedoesnotconsistofthese,anymorethanthelineconsists
of’straightandcurved’,orsolidsof’smoothandrough’。
Alltheseviewsshareadifficultywhichoccurswithregardto
species-of-a-genus,whenonepositstheuniversals,viz。whetheritis
animal-itselforsomethingotherthananimal-itselfthatisinthe
particularanimal。True,iftheuniversalisnotseparablefrom
sensiblethings,thiswillpresentnodifficulty;butifthe1andthe
numbersareseparable,asthosewhoexpresstheseviewssay,itisnot
easytosolvethedifficulty,ifonemayapplythewords’noteasy’to
theimpossible。Forwhenweapprehendtheunityin2,oringeneralin
anumber,doweapprehendathing-itselforsomethingelse?。
Some,then,generatespatialmagnitudesfrommatterofthis
sort,othersfromthepoint-andthepointisthoughtbythemtobe
not1butsomethinglike1-andfromothermatterlikeplurality,but
notidenticalwithit;aboutwhichprinciplesnonethelessthesame
difficultiesoccur。Forifthematterisone,lineandplane-and
soliwillbethesame;forfromthesameelementswillcomeoneand
thesamething。Butifthemattersaremorethanone,andthereisone
forthelineandasecondfortheplaneandanotherforthesolid,
theyeitherareimpliedinoneanotherornot,sothatthesame
resultswillfollowevenso;foreithertheplanewillnotcontaina
lineoritwillhealine。
Again,hownumbercanconsistoftheoneandplurality,they
makenoattempttoexplain;buthowevertheyexpressthemselves,the
sameobjectionsariseasconfrontthosewhoconstructnumberoutof
theoneandtheindefinitedyad。Fortheoneviewgeneratesnumber
fromtheuniversallypredicatedplurality,andnotfromaparticular
plurality;andtheothergeneratesitfromaparticularplurality,but
thefirst;for2issaidtobea’firstplurality’。Thereforethereis
practicallynodifference,butthesamedifficultieswillfollow,-is
itintermixtureorpositionorblendingorgeneration?andsoon。
Aboveallonemightpressthequestion’ifeachunitisone,whatdoes
itcomefrom?’Certainlyeachisnottheone-itself。Itmust,then,
comefromtheoneitselfandplurality,orapartofplurality。Tosay
thattheunitisapluralityisimpossible,foritisindivisible;and
togenerateitfromapartofpluralityinvolvesmanyother
objections;foraeachofthepartsmustbeindivisibleorit
willbeapluralityandtheunitwillbedivisibleandtheelements
willnotbetheoneandplurality;forthesingleunitsdonotcome
frompluralityandtheone。Again,,theholderofthisviewdoes
nothingbutpresupposeanothernumber;forhispluralityof
indivisiblesisanumber。Again,wemustinquire,inviewofthis
theoryalso,whetherthenumberisinfiniteorfinite。Fortherewas
atfirst,asitseems,apluralitythatwasitselffinite,from
whichandfromtheonecomesthefinitenumberofunits。Andthere
isanotherpluralitythatisplurality-itselfandinfinite
plurality;whichsortofplurality,then,istheelementwhich
co-operateswiththeone?Onemightinquiresimilarlyaboutthepoint,
i。e。theelementoutofwhichtheymakespatialmagnitudes。Forsurely
thisisnottheoneandonlypoint;atanyrate,then,letthemsay
outofwhateachofthepointsisformed。Certainlynotofsome
distancethepoint-itself。Noragaincantherebeindivisible
partsofadistance,astheelementsoutofwhichtheunitsaresaid
tobemadeareindivisiblepartsofplurality;fornumberconsists
ofindivisibles,butspatialmagnitudesdonot。
Alltheseobjections,then,andothersofthesortmakeitevident
thatnumberandspatialmagnitudescannotexistapartfromthings。
Again,thediscordaboutnumbersbetweenthevariousversionsisa
signthatitistheincorrectnessoftheallegedfactsthemselvesthat
bringsconfusionintothetheories。Forthosewhomaketheobjects
ofmathematicsaloneexistapartfromsensiblethings,seeingthe
difficultyabouttheFormsandtheirfictitiousness,abandonedideal
numberandpositedmathematical。Butthosewhowishedtomakethe
Formsatthesametimealsonumbers,butdidnotsee,ifoneassumed
theseprinciples,howmathematicalnumberwastoexistapartfrom
ideal,madeidealandmathematicalnumberthesame-inwords,since
infactmathematicalnumberhasbeendestroyed;fortheystate
hypothesespeculiartothemselvesandnotthoseofmathematics。Andhe
whofirstsupposedthattheFormsexistandthattheFormsarenumbers
andthattheobjectsofmathematicsexist,naturallyseparatedthe
two。Thereforeitturnsoutthatallofthemarerightinsome
respect,butonthewholenotright。Andtheythemselvesconfirmthis,
fortheirstatementsdonotagreebutconflict。Thecauseisthat
theirhypothesesandtheirprinciplesarefalse。Anditishardto
makeagoodcaseoutofbadmaterials,accordingtoEpicharmus:’as
soonas’tissaid,’tisseentobewrong。’
Butregardingnumbersthequestionswehaveraisedandthe
conclusionswehavereachedaresufficientforwhilehewhois
alreadyconvincedmightbefurtherconvincedbyalongerdiscussion,
onenotyetconvincedwouldnotcomeanynearertoconviction;
regardingthefirstprinciplesandthefirstcausesandelements,
theviewsexpressedbythosewhodiscussonlysensiblesubstance
havebeenpartlystatedinourworksonnature,andpartlydonot
belongtothepresentinquiry;buttheviewsofthosewhoassert
thatthereareothersubstancesbesidesthesensiblemustbe
considerednextafterthosewehavebeenmentioning。Since,then,some
saythattheIdeasandthenumbersaresuchsubstances,andthatthe
elementsoftheseareelementsandprinciplesofrealthings,we
mustinquireregardingthesewhattheysayandinwhatsensethey
sayit。
Thosewhopositnumbersonly,andthesemathematical,mustbe
consideredlater;butasregardsthosewhobelieveintheIdeasone
mightsurveyatthesametimetheirwayofthinkingandthedifficulty
intowhichtheyfall。FortheyatthesametimemaketheIdeas
universalandagaintreatthemasseparableandasindividuals。That
thisisnotpossiblehasbeenarguedbefore。Thereasonwhythose
whodescribedtheirsubstancesasuniversalcombinedthesetwo
characteristicsinonething,isthattheydidnotmakesubstances
identicalwithsensiblethings。Theythoughtthattheparticularsin
thesensibleworldwereastateoffluxandnoneofthemremained,but
thattheuniversalwasapartfromtheseandsomethingdifferent。And
Socratesgavetheimpulsetothistheory,aswesaidinourearlier
discussion,byreasonofhisdefinitions,buthedidnotseparate
universalsfromindividuals;andinthishethoughtrightly,innot
separatingthem。Thisisplainfromtheresults;forwithoutthe
universalitisnotpossibletogetknowledge,buttheseparationis
thecauseoftheobjectionsthatarisewithregardtotheIdeas。His
successors,however,treatingitasnecessary,iftherearetobe
anysubstancesbesidesthesensibleandtransientsubstances,that
theymustbeseparable,hadnoothers,butgaveseparateexistence
totheseuniversallypredicatedsubstances,sothatitfollowedthat
universalsandindividualswerealmostthesamesortofthing。Thisin
itself,then,wouldbeonedifficultyintheviewwehavementioned。
Letusnowmentionapointwhichpresentsacertaindifficulty
bothtothosewhobelieveintheIdeasandtothosewhodonot,and
whichwasstatedbefore,atthebeginning,amongtheproblems。Ifwe
donotsupposesubstancestobeseparate,andinthewayinwhich
individualthingsaresaidtobeseparate,weshalldestroy
substanceinthesenseinwhichweunderstand’substance’;butifwe
conceivesubstancestobeseparable,howarewetoconceivetheir
elementsandtheirprinciples?
Iftheyareindividualandnotuniversal,arealthingswill
bejustofthesamenumberastheelements,andbtheelements
willnotbeknowable。Foraletthesyllablesinspeechbe
substances,andtheirelementselementsofsubstances;thentheremust
beonlyone’ba’andoneofeachofthesyllables,sincetheyare
notuniversalandthesameinformbuteachisoneinnumberanda
’this’andnotakindpossessedofacommonnameandagainthey
supposethatthe’justwhatathingis’isineachcaseone。Andif
thesyllablesareunique,sotooarethepartsofwhichthey
consist;therewillnot,then,bemorea’sthanone,normorethanone
ofanyoftheotherelements,onthesameprincipleonwhichan
identicalsyllablecannotexistinthepluralnumber。Butifthisis
so,therewillnotbeotherthingsexistingbesidestheelements,
butonlytheelements。
bAgain,theelementswillnotbeevenknowable;fortheyare
notuniversal,andknowledgeisofuniversals。Thisisclearfrom
demonstrationsandfromdefinitions;forwedonotconcludethat
thistrianglehasitsanglesequaltotworightangles,unlessevery
trianglehasitsanglesequaltotworightangles,northatthisman
isananimal,unlesseverymanisananimal。
Butiftheprinciplesareuniversal,eitherthesubstances
第47章