首页 >出版文学> METAPHYSICS>第43章

第43章

  Further,whyshouldtherealwaysbebecoming,andwhatisthe
  causeofbecoming?-thisnoonetellsus。Andthosewhosupposetwo
  principlesmustsupposeanother,asuperiorprinciple,andsomust
  thosewhobelieveintheForms;forwhydidthingscometo
  participate,orwhydotheyparticipate,intheForms?Andallother
  thinkersareconfrontedbythenecessaryconsequencethatthereis
  somethingcontrarytoWisdom,i。e。tothehighestknowledge;butwe
  arenot。Forthereisnothingcontrarytothatwhichisprimary;for
  allcontrarieshavematter,andthingsthathavematterexistonly
  potentially;andtheignorancewhichiscontrarytoanyknowledge
  leadstoanobjectcontrarytotheobjectoftheknowledge;butwhat
  isprimaryhasnocontrary。
  Again,ifbesidessensiblethingsnoothersexist,therewillbe
  nofirstprinciple,noorder,nobecoming,noheavenlybodies,but
  eachprinciplewillhaveaprinciplebeforeit,asintheaccounts
  ofthetheologiansandallthenaturalphilosophers。Butifthe
  Formsorthenumbersaretoexist,theywillbecausesofnothing;
  orifnotthat,atleastnotofmovement。Further,howisextension,
  i。e。acontinuum,tobeproducedoutofunextendedparts?Fornumber
  willnot,eitherasmoverorasform,produceacontinuum。Butagain
  therecannotbeanycontrarythatisalsoessentiallyaproductive
  ormovingprinciple;foritwouldbepossibleforitnottobe。Or
  atleastitsactionwouldbeposteriortoitspotency。Theworld,
  then,wouldnotbeeternal。Butitis;oneofthesepremisses,then,
  mustbedenied。Andwehavesaidhowthismustbedone。Further,in
  virtueofwhatthenumbers,orthesoulandthebody,oringeneral
  theformandthething,areone-ofthisnoonetellsusanything;
  norcananyonetell,unlesshesays,aswedo,thatthemovermakes
  themone。Andthosewhosaymathematicalnumberisfirstandgoon
  togenerateonekindofsubstanceafteranotherandgivedifferent
  principlesforeach,makethesubstanceoftheuniverseamere
  seriesofepisodesforonesubstancehasnoinfluenceonanotherby
  itsexistenceornonexistence,andtheygiveusmanygoverning
  principles;buttheworldrefusestobegovernedbadly。
  ’Theruleofmanyisnotgood;onerulerlettherebe。’
  WEhavestatedwhatisthesubstanceofsensiblethings,dealing
  inthetreatiseonphysicswithmatter,andlaterwiththesubstance
  whichhasactualexistence。Nowsinceourinquiryiswhetherthere
  isorisnotbesidesthesensiblesubstancesanywhichisimmovable
  andeternal,and,ifthereis,whatitis,wemustfirstconsiderwhat
  issaidbyothers,sothat,ifthereisanythingwhichtheysay
  wrongly,wemaynotbeliabletothesameobjections,while,if
  thereisanyopinioncommontothemandus,weshallhavenoprivate
  grievanceagainstourselvesonthataccount;foronemustbecontent
  tostatesomepointsbetterthanone’spredecessors,andothersno
  worse。
  Twoopinionsareheldonthissubject;itissaidthattheobjects
  ofmathematics-i。e。numbersandlinesandthelike-aresubstances,and
  againthattheIdeasaresubstances。And1sincesomerecognize
  theseastwodifferentclasses-theIdeasandthemathematicalnumbers,
  and2somerecognizebothashavingonenature,while3some
  otherssaythatthemathematicalsubstancesaretheonlysubstances,
  wemustconsiderfirsttheobjectsofmathematics,notqualifyingthem
  byanyothercharacteristic-notasking,forinstance,whethertheyare
  infactIdeasornot,orwhethertheyaretheprinciplesand
  substancesofexistingthingsornot,butonlywhetherasobjectsof
  mathematicstheyexistornot,andiftheyexist,howtheyexist。Then
  afterthiswemustseparatelyconsidertheIdeasthemselvesina
  generalway,andonlyasfarastheacceptedmodeoftreatment
  demands;formostofthepointshavebeenrepeatedlymadeevenby
  thediscussionsoutsideourschool,and,further,thegreaterpart
  ofouraccountmustfinishbythrowinglightonthatinquiry,viz。
  whenweexaminewhetherthesubstancesandtheprinciplesof
  existingthingsarenumbersandIdeas;forafterthediscussionofthe
  Ideasthisremansasathirdinquiry。
  Iftheobjectsofmathematicsexist,theymustexisteitherin
  sensibleobjects,assomesay,orseparatefromsensibleobjects
  andthisalsoissaidbysome;oriftheyexistinneitherof
  theseways,eithertheydonotexist,ortheyexistonlyinsome
  specialsense。Sothatthesubjectofourdiscussionwillbenot
  whethertheyexistbuthowtheyexist。
  Thatitisimpossibleformathematicalobjectstoexistin
  sensiblethings,andatthesametimethatthedoctrineinquestionis
  anartificialone,hasbeensaidalreadyinourdiscussionof
  difficultieswehavepointedoutthatitisimpossiblefortwo
  solidstobeinthesameplace,andalsothataccordingtothesame
  argumenttheotherpowersandcharacteristicsalsoshouldexistin
  sensiblethingsandnoneofthemseparately。Thiswehavesaid
  already。But,further,itisobviousthatonthistheoryitis
  impossibleforanybodywhatevertobedivided;foritwouldhaveto
  bedividedataplane,andtheplaneataline,andthelineata
  point,sothatifthepointcannotbedivided,neithercantheline,
  andifthelinecannot,neithercantheplanenorthesolid。What
  difference,then,doesitmakewhethersensiblethingsaresuch
  indivisibleentities,or,withoutbeingsothemselves,have
  indivisibleentitiesinthem?Theresultwillbethesame;ifthe
  sensibleentitiesaredividedtheotherswillbedividedtoo,or
  elsenoteventhesensibleentitiescanbedivided。
  But,again,itisnotpossiblethatsuchentitiesshouldexist
  separately。Forifbesidesthesensiblesolidstherearetobeother
  solidswhichareseparatefromthemandpriortothesensible
  solids,itisplainthatbesidestheplanesalsotheremustbeother
  andseparateplanesandpointsandlines;forconsistencyrequires
  this。Butiftheseexist,againbesidestheplanesandlinesand
  pointsofthemathematicalsolidtheremustbeotherswhichare
  separate。Forincompositesarepriortocompounds;andifthere
  are,priortothesensiblebodies,bodieswhicharenotsensible,by
  thesameargumenttheplaneswhichexistbythemselvesmustbeprior
  tothosewhichareinthemotionlesssolids。Thereforethesewillbe
  planesandlinesotherthanthosethatexistalongwiththe
  mathematicalsolidstowhichthesethinkersassignseparateexistence;
  forthelatterexistalongwiththemathematicalsolids,whilethe
  othersarepriortothemathematicalsolids。Again,therefore,
  therewillbe,belongingtotheseplanes,lines,andpriortothem
  therewillhavetobe,bythesameargument,otherlinesandpoints;
  andpriortothesepointsinthepriorlinestherewillhavetobe
  otherpoints,thoughtherewillbenootherspriortothese。Now1
  theaccumulationbecomesabsurd;forwefindourselveswithonesetof
  solidsapartfromthesensiblesolids;threesetsofplanesapartfrom
  thesensibleplanes-thosewhichexistapartfromthesensible
  planes,andthoseinthemathematicalsolids,andthosewhichexist
  apartfromthoseinthemathematicalsolids;foursetsoflines,and
  fivesetsofpoints。Withwhichofthese,then,willthe
  mathematicalsciencesdeal?Certainlynotwiththeplanesandlines
  andpointsinthemotionlesssolid;forsciencealwaysdealswithwhat
  isprior。Andthesameaccountwillapplyalsotonumbers;for
  therewillbeadifferentsetofunitsapartfromeachsetof
  points,andalsoapartfromeachsetofrealities,fromtheobjectsof
  senseandagainfromthoseofthought;sothattherewillbevarious
  classesofmathematicalnumbers。
  Again,howisitpossibletosolvethequestionswhichwehave
  alreadyenumeratedinourdiscussionofdifficulties?Forthe
  objectsofastronomywillexistapartfromsensiblethingsjustasthe
  objectsofgeometrywill;buthowisitpossiblethataheavenandits
  parts-oranythingelsewhichhasmovement-shouldexistapart?
  Similarlyalsotheobjectsofopticsandofharmonicswillexist
  apart;fortherewillbebothvoiceandsightbesidesthesensible
  orindividualvoicesandsights。Thereforeitisplainthatthe
  othersensesaswell,andtheotherobjectsofsense,willexist
  apart;forwhyshouldonesetofthemdosoandanothernot?Andif
  thisisso,therewillalsobeanimalsexistingapart,sincethere
  willbesenses。
  Again,therearecertainmathematicaltheoremsthatareuniversal,
  extendingbeyondthesesubstances。Herethenweshallhaveanother
  intermediatesubstanceseparatebothfromtheIdeasandfromthe
  intermediates,-asubstancewhichisneithernumbernorpointsnor
  spatialmagnitudenortime。Andifthisisimpossible,plainlyitis
  alsoimpossiblethattheformerentitiesshouldexistseparatefrom
  sensiblethings。
  And,ingeneral,conclusioncontraryaliketothetruthandtothe
  usualviewsfollow,ifoneistosupposetheobjectsofmathematicsto
  existthusasseparateentities。Forbecausetheyexistthustheymust
  bepriortosensiblespatialmagnitudes,butintruththeymustbe
  posterior;fortheincompletespatialmagnitudeisintheorderof
  generationprior,butintheorderofsubstanceposterior,asthe
  lifelessistotheliving。
  Again,byvirtueofwhat,andwhen,willmathematicalmagnitudes
  beone?Forthingsinourperceptibleworldareoneinvirtueofsoul,
  orofapartofsoul,orofsomethingelsethatisreasonable
  enough;whenthesearenotpresent,thethingisaplurality,and
  splitsupintoparts。Butinthecaseofthesubjectsof
  mathematics,whicharedivisibleandarequantities,whatisthecause
  oftheirbeingoneandholdingtogether?
  Again,themodesofgenerationoftheobjectsofmathematics
  showthatweareright。Forthedimensionfirstgeneratedislength,
  thencomesbreadth,lastlydepth,andtheprocessiscomplete。If,
  then,thatwhichisposteriorintheorderofgenerationispriorin
  theorderofsubstantiality,thesolidwillbepriortotheplane
  andtheline。Andinthiswayalsoitisbothmorecompleteandmore
  whole,becauseitcanbecomeanimate。How,ontheotherhand,could
  alineoraplanebeanimate?Thesuppositionpassesthepowerof
  oursenses。
  Again,thesolidisasortofsubstance;foritalreadyhasina
  sensecompleteness。Buthowcanlinesbesubstances?Neitherasaform
  orshape,asthesoulperhapsis,norasmatter,likethesolid;for
  wehavenoexperienceofanythingthatcanbeputtogetheroutof
  linesorplanesorpoints,whileifthesehadbeenasortof
  materialsubstance,weshouldhaveobservedthingswhichcouldbe
  puttogetheroutofthem。
  Grant,then,thattheyarepriorindefinition。Stillnotall
  thingsthatarepriorindefinitionarealsopriorin
  substantiality。Forthosethingsarepriorinsubstantialitywhich
  whenseparatedfromotherthingssurpasstheminthepowerof
  independentexistence,butthingsarepriorindefinitiontothose
  whosedefinitionsarecompoundedoutoftheirdefinitions;andthese
  twopropertiesarenotcoextensive。Forifattributesdonotexist
  apartfromthesubstancese。g。a’mobile’orapale’,paleis
  priortothepalemanindefinition,butnotinsubstantiality。Forit
  cannotexistseparately,butisalwaysalongwiththeconcrete
  thing;andbytheconcretethingImeanthepaleman。Thereforeit
  isplainthatneitheristheresultofabstractionpriornorthat
  whichisproducedbyaddingdeterminantsposterior;foritisby
  addingadeterminanttopalethatwespeakofthepaleman。
  Ithas,then,beensufficientlypointedoutthattheobjectsof
  mathematicsarenotsubstancesinahigherdegreethanbodiesare,and
  thattheyarenotpriortosensiblesinbeing,butonlyindefinition,
  andthattheycannotexistsomewhereapart。Butsinceitwasnot
  possibleforthemtoexistinsensibleseither,itisplainthat
  theyeitherdonotexistatallorexistinaspecialsenseand
  thereforedonot’exist’withoutqualification。For’exist’hasmany
  senses。