WhenwepasstothatthirdgreatAthenianteacher,Aristotle,thecaseisfardifferent。HerewasamanwhosenamewastobereceivedasalmostasynonymforGreekscienceformorethanathousandyearsafterhisdeath。AllthroughtheMiddleAgeshiswritingsweretobeacceptedasvirtuallythelastwordregardingtheproblemsofnature。Weshallseethathisfollowersactuallypreferredhismandatetothetestimonyoftheirownsenses。Weshallsee,further,thatmodernscienceprogressedsomewhatinproportionasitoverthrewtheAristoteliandogmas。Butthetraditionsofseventeenoreighteencenturiesarenoteasilysetaside,anditisperhapsnottoomuchtosaythatthenameofAristotlestands,eveninourowntime,asvaguelyrepresentativeinthepopularmindofallthatwashighestandbestinthescienceofantiquity。Yet,perhaps,itwouldnotbegoingtoofartoassertthatsomethinglikeareversalofthisjudgmentwouldbenearerthetruth。Aristotledid,indeed,bringtogetheragreatmassoffactsregardinganimalsinhisworkonnaturalhistory,which,beingpreserved,hasbeendeemedtoentitleitsauthortobecalledthe"fatherofzoology。"Butthereisnoreasontosupposethatanyconsiderableportionofthisworkcontainedmatterthatwasnovel,orrecordedobservationsthatwereoriginalwithAristotle;andtheclassificationsthereoutlinedareatbestbutavagueforeshadowingoftheelaborationofthescience。Suchasitis,however,thenaturalhistorystandstothecreditoftheStagirite。Hemustbecredited,too,withaclearenunciationofonemostimportantscientificdoctrine——namely,thedoctrineofthesphericalfigureoftheearth。WehavealreadyseenthatthistheoryoriginatedwiththePythagoreanphilosophersoutinItaly。Wehaveseen,too,thatthedoctrinehadnotmadeitswayinAtticainthetimeofAnaxagoras。Butintheinterveningcenturyithadgainedwidecurrency,elsesoessentiallyconservativeathinkerasAristotlewouldscarcelyhaveacceptedit。Hedidacceptit,however,andgavethedoctrineclearestandmostpreciseexpression。Herearehiswords:[2]
"Astothefigureoftheearthitmustnecessarilybespherical……Ifitwerenotso,theeclipsesofthemoonwouldnothavesuchsectionsastheyhave。Forintheconfigurationsinthecourseofamonththedeficientparttakesalldifferentshapes;itisstraight,andconcave,andconvex;butineclipsesitalwayshasthelineofdivisionsconvex;wherefore,sincethemooniseclipsedinconsequenceoftheinterpositionoftheearth,theperipheryoftheearthmustbethecauseofthisbyhavingasphericalform。Andagain,fromtheappearanceofthestarsitisclear,notonlythattheearthisround,butthatitssizeisnotverylarge;forwhenwemakeasmallremovaltothesouthorthenorth,thecircleofthehorizonbecomespalpablydifferent,sothatthestarsoverheadundergoagreatchange,andarenotthesametothosethattravelinthenorthandtothesouth。ForsomestarsareseeninEgyptoratCyprus,butarenotseeninthecountriestothenorthofthese;andthestarsthatinthenortharevisiblewhiletheymakeacompletecircuit,thereundergoasetting。Sothatfromthisitismanifest,notonlythattheformoftheearthisround,butalsothatitisapartofanotverylargesphere;forotherwisethedifferencewouldnotbesoobvioustopersonsmakingsosmallachangeofplace。WhereforewemayjudgethatthosepersonswhoconnecttheregionintheneighborhoodofthepillarsofHerculeswiththattowardsIndia,andwhoassertthatinthiswaytheseaisone,donotassertthingsveryimprobable。Theyconfirmthisconjecturemoreoverbytheelephants,whicharesaidtobeofthesamespeciestowardseachextreme;asifthiscircumstancewasaconsequenceoftheconjunctionoftheextremes。Themathematicianswhotrytocalculatethemeasureofthecircumference,makeitamounttofourhundredthousandstadia;
whencewecollectthattheearthisnotonlyspherical,butisnotlargecomparedwiththemagnitudeoftheotherstars。"
ButingivingfullmeedofpraisetoAristotleforthepromulgationofthisdoctrineofthesphericityoftheearth,itmustunfortunatelybeaddedthattheconservativephilosopherpausedwithouttakingoneotherimportantstep。Hecouldnotaccept,but,onthecontrary,heexpresslyrepudiated,thedoctrineoftheearth’smotion。WehaveseenthatthisideaalsowasapartofthePythagoreandoctrine,andweshallhaveoccasiontodwellmoreatlengthonthispointinasucceedingchapter。IthasevenbeencontendedbysomecriticsthatitwastheadverseconvictionofthePeripateticphilosopherwhich,morethananyothersingleinfluence,tendedtoretardtheprogressofthetruedoctrineregardingthemechanismoftheheavens。
Aristotleacceptedthesphericityoftheearth,andthatdoctrinebecameacommonplaceofscientificknowledge,andsocontinuedthroughoutclassicalantiquity。ButAristotlerejectedthedoctrineoftheearth’smotion,andthatdoctrine,thoughpromulgatedactivelybyafewcontemporariesandimmediatesuccessorsoftheStagirite,wasthendoomedtosinkoutofviewformorethanathousandyears。IfitbeacorrectassumptionthattheinfluenceofAristotlewas,inalargemeasure,responsibleforthisresult,thenweshallperhapsnotbefarastrayinassumingthatthegreatfounderofthePeripateticschoolwas,onthewhole,moreinstrumentalinretardingtheprogressofastronomicalsciencethatanyotheronemanthateverlived。
ThefieldofscienceinwhichAristotlewaspre-eminentlyapathfinderiszoology。Hiswritingsonnaturalhistoryhavelargelybeenpreserved,andtheyconstitutebyfarthemostimportantcontributiontothesubjectthathascomedowntousfromantiquity。TheyshowusthatAristotlehadgainedpossessionofthewidestrangeoffactsregardingtheanimalkingdom,and,whatisfarmoreimportant,hadattemptedtoclassifythesefacts。Insodoinghebecamethefounderofsystematiczoology。
Aristotle’sclassificationoftheanimalkingdomwasknownandstudiedthroughouttheMiddleAges,and,infact,remainedinvogueuntilsupersededbythatofCuvierinthenineteenthcentury。ItisnottobesupposedthatallthetermsofAristotle’sclassificationoriginatedwithhim。Someofthedivisionsaretoopatenttohaveescapedtheobservationofhispredecessors。Thus,forexample,thedistinctionbetweenbirdsandfishesasseparateclassesofanimalsissoobviousthatitmustappealtoachildortoasavage。ButtheeffortsofAristotleextended,asweshallsee,tolesspatentgeneralizations。Attheveryoutset,hisgranddivisionoftheanimalkingdomintoblood-bearingandbloodlessanimalsimpliesaverybroadandphilosophicalconceptionoftheentireanimalkingdom。Themodernphysiologistdoesnotaccepttheclassification,inasmuchasitisnowknownthatcolorlessfluidsperformthefunctionsofbloodforallthelowerorganisms。ButthefactremainsthatAristotle’sgranddivisionscorrespondtothegranddivisionsoftheLamarckiansystem——vertebratesandinvertebrates——whicheveryonenowaccepts。Aristotle,aswehavesaid,basedhisclassificationuponobservationoftheblood;Lamarckwasguidedbyastudyoftheskeleton。Thefactthatsuchdiversepointsofviewcoulddirecttheobservertowardsthesameresultgives,inferentially,asuggestivelessoninwhatthemodernphysiologistcallsthehomologiesofpartsoftheorganism。
Aristotledivideshisso-calledblood-bearinganimalsintofiveclasses:1Four-footedanimalsthatbringforththeiryoungalive;2birds;3egg-layingfour-footedanimalsincludingwhatmodernnaturalistscallreptilesandamphibians;4whalesandtheirallies;5fishes。Thisclassification,aswillbeobserved,isnotsoveryfarafieldfromthemoderndivisionsintomammals,birds,reptiles,amphibians,andfishes。ThatAristotleshouldhaverecognizedthefundamentaldistinctionbetweenfishesandthefish-likewhales,dolphins,andporpoisesprovesthefarfromsuperficialcharacterofhisstudies。
Aristotleknewthattheseanimalsbreathebymeansoflungsandthattheyproducelivingyoung。Herecognized,therefore,theiraffinitywithhisfirstclassofanimals,evenifhedidnot,likethemodernnaturalist,considertheseaffinitiescloseenoughtojustifybringingthetwotypestogetherintoasingleclass。
ThebloodlessanimalswerealsodividedbyAristotleintofiveclasses——namely:1Cephalopodatheoctopus,cuttle-fish,etc。;2weak-shelledanimalscrabs,etc。;3insectsandtheiralliesincludingvariousforms,suchasspidersandcentipedes,whichthemodernclassifierpreferstoplacebythemselves;4hard-shelledanimalsclams,oysters,snails,etc。;5aconglomerategroupofmarineforms,includingstar-fish,sea-urchins,andvariousanomalousformsthatwereregardedaslinkingtheanimaltothevegetableworlds。ThisclassificationofthelowerformsofanimallifecontinuedinvogueuntilCuviersubstitutedforithisfamousgroupingintoarticulates,mollusks,andradiates;whichgroupinginturnwasinpartsupersededlaterinthenineteenthcentury。
WhatAristotledidfortheanimalkingdomhispupil,Theophrastus,didinsomemeasureforthevegetablekingdom。
Theophrastus,however,wasmuchlessaclassifierthanhismaster,andhisworkonbotany,calledTheNaturalHistoryofDevelopment,payscomparativelyslightattentiontotheoreticalquestions。Itdealslargelywithsuchpracticalitiesasthemakingofcharcoal,ofpitch,andofresin,andtheeffectsofvariousplantsontheanimalorganismwhentakenasfoodsorasmedicines。InthisregardtheworkofTheophrastus,ismorenearlyakintothenaturalhistoryofthefamousRomancompiler,Pliny。Itremained,however,throughoutantiquityasthemostimportantworkonitssubject,anditentitlesTheophrastustobecalledthe"fatherofbotany。"Theophrastusdealsalsowiththemineralkingdomaftermuchthesamefashion,andhereagainhisworkisthemostnotablethatwasproducedinantiquity。
Weareenteringnowuponthemostimportantscientificepochofantiquity。WhenAristotleandTheophrastuspassedfromthescene,Athensceasedtobeinanysensethescientificcentreoftheworld。Thatcitystillretaineditsreminiscentglory,andcannotbeignoredinthehistoryofculture,butnogreatscientificleaderwaseveragaintobebornortotakeuphispermanentabodewithintheconfinesofGreeceproper。Withalmostcataclysmicsuddenness,anewintellectualcentreappearedonthesouthshoreoftheMediterranean。ThiswasthecityofAlexandria,acitywhichAlexandertheGreathadfoundedduringhisbriefvisittoEgypt,andwhichbecamethecapitalofPtolemySoterwhenhechoseEgyptashisportionofthedismemberedempireofthegreatMacedonian。PtolemyhadbeenwithhismasterintheEast,andwaswithhiminBabyloniawhenhedied。HehadthereforecomepersonallyincontactwithBabyloniancivilization,andwecannotdoubtthatthishadamostimportantinfluenceuponhislife,andthroughhimuponthenewcivilizationoftheWest。Inpointofculture,AlexandriamustberegardedasthesuccessorofBabylon,scarcelylessdirectlythanofGreece。FollowingtheBabylonianmodel,Ptolemyerectedagreatmuseumandbegancollectingalibrary。Beforehisdeathitwassaidthathehadcollectednofewerthantwohundredthousandmanuscripts。Hehadgatheredalsoacompanyofgreatteachersandfoundedaschoolofsciencewhich,ashasjustbeensaid,madeAlexandriatheculture-centreoftheworld。
Athensinthedayofherprimehadknownnothingquitelikethis。
SuchprivatecitizensasAristotleareknowntohavehadlibraries,buttherewerenogreatpubliccollectionsofbooksinAthens,orinanyotherpartoftheGreekdomain,untilPtolemyfoundedhisfamouslibrary。Asiswellknown,suchlibrarieshadexistedinBabyloniaforthousandsofyears。ThecharacterwhichthePtolemaicepochtookonwasnodoubtduetoBabylonianinfluence,butquiteasmuchtothepersonalexperienceofPtolemyhimselfasanexplorerintheFarEast。ThemarvellousconqueringjourneyofAlexanderhadenormouslywidenedthehorizonoftheGreekgeographer,andstimulatedtheimaginationofallranksofthepeople,Itwasbutnatural,then,thatgeographyanditsparentscienceastronomyshouldoccupytheattentionofthebestmindsinthissucceedingepoch。Inpointoffact,suchacompanyofstar-gazersandearth-measurerscameuponthesceneinthisthirdcenturyB。C。ashadneverbeforeexistedanywhereintheworld。Thewholetrendofthetimewastowardsmechanics。Itwasasifthegreatestthinkershadsquarelyfacedaboutfromtheattitudeofthemysticalphilosophersoftheprecedingcentury,andhadsetthemselvesthetaskofsolvingallthemechanicalriddlesoftheuniverse,Theynolongertroubledthemselvesaboutproblemsof"being"and"becoming";theygavebutlittleheedtometaphysicalsubtleties;theydemandedthattheirthoughtsshouldbegaugedbyobjectiverealities。Hencetherearoseasuccessionofgreatgeometers,andtheirconceptionswereappliedtotheconstructionofnewmechanicalcontrivancesontheonehand,andtotheelaborationoftheoriesofsiderealmechanicsontheother。
ThewonderfulcompanyofmenwhoperformedthefeatsthatareabouttoberecordeddidnotallfindtheirhomeinAlexandria,tobesure;buttheyallcamemoreorlessundertheAlexandrianinfluence。Weshallseethattherearetwootherimportantcentres;oneoutinSicily,almostattheconfinesoftheGreekterritoryinthewest;theotherinAsiaMinor,notablyontheislandofSamos——theislandwhich,itwillberecalled,wasatanearlierdaythebirthplaceofPythagoras。ButwhereasinthepreviouscenturycolonistsfromtheconfinesofthecivilizedworldcametoAthens,nowalleyesturnedtowardsAlexandria,andsoimprovedwerethefacilitiesforcommunicationthatnodoubtthediscoveriesofonecoterieofworkerswereknowntoalltheothersmuchmorequicklythanhadeverbeenpossiblebefore。Welearn,forexample,thatthestudiesofAristarchusofSamosweredefinitelyknowntoArchimedesofSyracuse,outinSicily。
Indeed,asweshallsee,itisthroughachancereferencepreservedinoneofthewritingsofArchimedesthatoneofthemostimportantspeculationsofAristarchusismadeknowntous。
ThisillustratessufficientlytheintercommunicationthroughwhichthethoughtoftheAlexandrianepochwasbroughtintoasinglechannel。Wenolonger,asinthedayoftheearlierschoolsofGreekphilosophy,haveisolatedgroupsofthinkers。
Thescientificdramaisnowplayedoutuponasinglestage;andifwepass,asweshallinthepresentchapter,fromAlexandriatoSyracuseandfromSyracusetoSamos,theshiftofscenesdoesnoviolencetothedramaticunities。
NotwithstandingthenumberofgreatworkerswhowerenotproperlyAlexandrians,nonethelesstheepochiswithproprietytermedAlexandrian。NotmerelyinthethirdcenturyB。C。,butthroughoutthelapseofatleastfoursucceedingcenturies,thecityofAlexanderandthePtolemiescontinuedtoholditsplaceastheundisputedculture-centreoftheworld。DuringthatperiodRomerosetoitspinnacleofgloryandbegantodecline,withouteverchallengingtheintellectualsupremacyoftheEgyptiancity。Weshallsee,inalaterchapter,thattheAlexandrianinfluenceswerepassedontotheMohammedanconquerors,andeveryoneisawarethatwhenAlexandriawasfinallyoverthrownitsplacewastakenbyanotherGreekcity,ByzantiumorConstantinople。ButthattransferdidnotoccuruntilAlexandriahadenjoyedalongerperiodofsupremacyasanintellectualcentrethanhadperhapseverbeforebeengrantedtoanycity,withthepossibleexceptionofBabylon。
EUCLIDABOUT300B。C。
OurpresentconcerniswiththatfirstwonderfuldevelopmentofscientificactivitywhichbeganunderthefirstPtolemy,andwhichpresents,inthecourseofthefirstcenturyofAlexandrianinfluence,themostremarkablecoterieofscientificworkersandthinkersthatantiquityproduced。Theearliestgroupofthesenewleadersinsciencehadatitsheadamanwhosenamehasbeenahouseholdwordeversince。ThiswasEuclid,thefatherofsystematicgeometry。Traditionhaspreservedtousbutlittleofthepersonalityofthisremarkableteacher;but,ontheotherhand,hismostimportantworkhascomedowntousinitsentirety。TheElementsofGeometry,withwhichthenameofEuclidisassociatedinthemindofeveryschool-boy,presentedthechiefpropositionsofitssubjectinsosimpleandlogicalaformthattheworkremainedatextbookeverywhereformorethantwothousandyears。Indeeditisonlynowbeginningtobesuperseded。
ItisnottwentyyearssinceEnglishmathematicianscoulddeplorethefactthat,despitecertainratherobviousdefectsoftheworkofEuclid,nobettertextbookthanthiswasavailable。Euclid’swork,ofcourse,givesexpressiontomuchknowledgethatdidnotoriginatewithhim。WehavealreadyseenthatseveralimportantpropositionsofgeometryhadbeendevelopedbyThales,andonebyPythagoras,andthattherudimentsofthesubjectwereatleastasoldasEgyptiancivilization。PreciselyhowmuchEuclidaddedthroughhisowninvestigationscannotbeascertained。Itseemsprobablethathewasadiffuserofknowledgeratherthananoriginator,butasagreatteacherhisfameissecure。Heiscreditedwithanepigramwhichinitselfmightinsurehimperpetuityoffame:"Thereisnoroyalroadtogeometry,"washisanswertoPtolemywhenthatrulerhadquestionedwhethertheElementsmightnotbesimplified。Doubtlessthis,likemostsimilargoodsayings,isapocryphal;butwhoeverinventedithasmadetheworldhisdebtor。
ThecatholicityofPtolemy’stastesledhim,naturallyenough,tocultivatethebiologicalnolessthanthephysicalsciences。Inparticularhisinfluencepermittedanepochaladvanceinthefieldofmedicine。Twoanatomistsbecamefamousthroughtheinvestigationstheywerepermittedtomakeunderthepatronageoftheenlightenedruler。TheseearliestofreallyscientificinvestigatorsofthemechanismofthehumanbodywerenamedHerophilusandErasistratus。Thesetwoanatomistsgainedtheirknowledgebythedissectionofhumanbodiestheirsarethefirstrecordsthatwehaveofsuchpractices,andKingPtolemyhimselfissaidtohavebeenpresentatsomeofthesedissections。Theywerethefirsttodiscoverthatthenerve-trunkshavetheirorigininthebrainandspinalcord,andtheyarecreditedalsowiththediscoverythatthesenerve-trunksareoftwodifferentkinds——onetoconveymotor,andtheothersensoryimpulses。Theydiscovered,described,andnamedthecoveringsofthebrain。ThenameofHerophilusisstillappliedbyanatomists,inhonorofthediscoverer,tooneofthesinusesorlargecanalsthatconveythevenousbloodfromthehead。Herophilusalsonoticedanddescribedfourcavitiesorventriclesinthebrain,andreachedtheconclusionthatoneoftheseventricleswastheseatofthesoul——abeliefshareduntilcomparativelyrecenttimesbymanyphysiologists。Hemadealsoacarefulandfairlyaccuratestudyoftheanatomyoftheeye,agreatlyimprovedtheoldoperationforcataract。
Withtheincreasedknowledgeofanatomycamealsocorrespondingadvancesinsurgery,andmanyexperimentaloperationsaresaidtohavebeenperformeduponcondemnedcriminalswhowerehandedovertothesurgeonsbythePtolemies。Whilemanymodernwritershaveattemptedtodiscredittheseassertions,itisnotimprobablethatsuchoperationswereperformed。Inanagewhenhumanlifewasheldsocheap,andamongapeopleaccustomedtotorturingcondemnedprisonersforcomparativelyslightoffences,itisnotunlikelythatthesurgeonswereallowedtoinflictperhapslesspainfultorturesinthecauseofscience。Furthermore,weknowthatcondemnedcriminalsweresometimeshandedovertothemedicalprofessiontobe"operateduponandkilledinwhateverwaytheythoughtbest"evenaslateasthesixteenthcentury。
Tertullian[1]probablyexaggerates,however,whenheputsthenumberofsuchvictimsinAlexandriaatsixhundred。
HadHerophilusandErasistratusbeenashappyintheirdeductionsastothefunctionsoftheorgansastheywereintheirknowledgeofanatomy,thescienceofmedicinewouldhavebeenplaceduponaveryhighplaneevenintheirtime。Unfortunately,however,theynotonlydrewerroneousinferencesastothefunctionsoftheorgans,butalsodisagreedradicallyastowhatfunctionscertainorgansperformed,andhowdiseasesshouldbetreated,evenwhenagreeingperfectlyonthesubjectofanatomyitself。Theircontributiontotheknowledgeofthescientifictreatmentofdiseasesholdsnosuchplace,therefore,astheiranatomicalinvestigations。
HalfacenturyafterthetimeofHerophilusthereappearedaGreekphysician,Heraclides,whosereputationintheuseofdrugsfarsurpassesthatoftheanatomistsoftheAlexandrianschool。
Hisreputationhasbeenhandeddownthroughthecenturiesasthatofaphysician,ratherthanasurgeon,althoughinhisowntimehewasconsideredoneofthegreatsurgeonsoftheperiod。
Heraclidesbelongedtothe"Empiric"school,whichrejectedanatomyasuseless,dependingentirelyontheuseofdrugs。Heisthoughttohavebeenthefirstphysiciantopointoutthevalueofopiumincertainpainfuldiseases。Hisprescriptionofthisdrugforcertaincasesof"sleeplessness,spasm,cholera,andcolic,"showsthathisuseofitwasnotunlikethatofthemodernphysicianincertaincases;andhistreatmentoffevers,bykeepingthepatient’sheadcoolandfacilitatingthesecretionsofthebody,isstillrecognizedas"goodpractice。"
Headvocatedafreeuseofliquidsinquenchingthefeverpatient’sthirst——arecognizedtherapeuticmeasureto-day,butonethatwaswidelycondemnedacenturyago。
WedonotknowjustwhenEucliddied,butashewasattheheightofhisfameinthetimeofPtolemyI。,whosereignendedintheyear285B。C。,itishardlyprobablethathewasstilllivingwhenayoungmannamedArchimedescametoAlexandriatostudy。
ArchimedeswasbornintheGreekcolonyofSyracuse,ontheislandofSicily,intheyear287B。C。WhenhevisitedAlexandriaheprobablyfoundApolloniusofPerga,thepupilofEuclid,attheheadofthemathematicalschoolthere。JusthowlongArchimedesremainedatAlexandriaisnotknown。Whenhehadsatisfiedhiscuriosityorcompletedhisstudies,hereturnedtoSyracuseandspenthislifethere,chieflyunderthepatronageofKingHiero,whoseemsfullytohaveappreciatedhisabilities。
Archimedeswasprimarilyamathematician。Lefttohisowndevices,hewouldprobablyhavedevotedhisentiretimetothestudyofgeometricalproblems。ButKingHierohaddiscoveredthathisprotegehadwonderfulmechanicalingenuity,andhemadegooduseofthisdiscovery。Understressoftheking’surgings,thephilosopherwasledtoinventagreatvarietyofmechanicalcontrivances,someofthemmostcuriousones。Antiquitycreditedhimwiththeinventionofmorethanfortymachines,anditisthese,ratherthanhispurelymathematicaldiscoveries,thatgavehisnamepopularvoguebothamonghiscontemporariesandwithposterity。EveryonehasheardofthescrewofArchimedes,throughwhichtheparadoxicaleffectwasproducedofmakingwaterseemtoflowuphill。Thebestideaofthiscuriousmechanismisobtainedifonewilltakeinhandanordinarycorkscrew,andimaginethisinstrumenttobechangedintoahollowtube,retainingpreciselythesameshapebutincreasedtosomefeetinlengthandtoaproportionatediameter。Ifonewillholdthecorkscrewinaslantingdirectionandturnitslowlytotheright,supposingthatthepointdipsupaportionofwatereachtimeitrevolves,onecaninimaginationfollowtheflowofthatportionofwaterfromspiraltospiral,thewateralwaysrunningdownward,ofcourse,yetparadoxicallybeingliftedhigherandhighertowardsthebaseofthecorkscrew,untilfinallyitpoursoutintheactualArchimedes’tubeatthetop。Thereisanotherformofthescrewinwhicharevolvingspiralbladeoperateswithinacylinder,buttheprincipleispreciselythesame。Witheitherformwatermaybelifted,bythemereturningofthescrew,toanydesiredheight。TheingeniousmechanismexcitedthewonderofthecontemporariesofArchimedes,aswellitmight。
Moreefficientdeviceshavesupersededitinmoderntimes,butitstillexcitestheadmirationofallwhoexamineit,anditseffectsseemasparadoxicalasever。
SomeotherofthemechanismsofArchimedeshavebeenmadeknowntosuccessivegenerationsofreadersthroughthepagesofPolybiusandPlutarch。ThesearethedevicesthroughwhichArchimedesaidedKingHierotowardofftheattacksoftheRomangeneralMarcellus,whointhecourseofthesecondPunicwarlaidsiegetoSyracuse。
Plutarch,inhislifeofMarcellus,describestheRoman’sattackandArchimedes’defenceinmuchdetail。IncidentallyhetellsusalsohowArchimedescametomakethedevicesthatrenderedthesiegesofamous:
"Marcellushimself,withthreescoregalleysoffiverowersateverybank,wellarmedandfullofallsortsofartilleryandfireworks,didassaultbysea,androwedhardtothewall,havingmadeagreatengineanddeviceofbattery,uponeightgalleyschainedtogether,tobatterthewall:trustinginthegreatmultitudeofhisenginesofbattery,andtoallsuchothernecessaryprovisionashehadforwars,asalsoinhisownreputation。ButArchimedesmadelightaccountofallhisdevices,asindeedtheywerenothingcomparabletotheengineshimselfhadinvented。Thisinventivearttoframeinstrumentsandengineswhicharecalledmechanical,ororganical,sohighlycommendedandesteemedofallsortsofpeoplewasfirstsetforthbyArchitas,andbyEudoxus:partlytobeautifyalittlethescienceofgeometrybythisfineness,andpartlytoproveandconfirmbymaterialexamplesandsensibleinstruments,certaingeometricalconclusions,whereofamancannotfindouttheconceivabledemonstrationsbyenforcedreasonsandproofs。Asthatconclusionwhichinstructethonetosearchouttwolinesmeanproportional,whichcannotbeprovedbyreasondemonstrative,andyetnotwithstandingisaprincipleandanacceptedgroundformanythingswhicharecontainedintheartofportraiture。Bothofthemhavefashionedittotheworkmanshipofcertaininstruments,calledmesolabesormesographs,whichservetofindthesemeanlinesproportional,bydrawingcertaincurvelines,andoverthwartandobliquesections。ButafterthatPlatowasoffendedwiththem,andmaintainedagainstthem,thattheydidutterlycorruptanddisgrace,theworthinessandexcellenceofgeometry,makingittodescendfromthingsnotcomprehensibleandwithoutbody,untothingssensibleandmaterial,andtobringittoapalpablesubstance,wherethevileandbasehandiworkofmanistobeemployed:sincethattime,Isay,handicraft,ortheartofengines,cametobeseparatedfromgeometry,andbeinglongtimedespisedbythephilosophers,itcametobeoneofthewarlikearts。
"ButArchimedeshavingtoldKingHiero,hiskinsmanandfriend,thatitwaspossibletoremoveasgreataweightashewould,withaslittlestrengthashelistedtoputtoit:andboastinghimselfthusastheyreportofhimandtrustingtotheforceofhisreasons,wherewithheprovedthisconclusion,thatiftherewereanotherglobeofearth,hewasabletoremovethisofours,andpassitovertotheother:KingHierowonderingtohearhim,requiredhimtoputhisdeviceinexecution,andtomakehimseebyexperience,somegreatorheavyweightremoved,bylittleforce。SoArchimedescaughtholdwithabookofoneofthegreatestcarects,orhulksofthekingthattodrawittotheshoreoutofthewaterrequiredamarvellousnumberofpeopletogoaboutit,andwashardlytobedonesoandputagreatnumberofmenmoreintoher,thanherordinaryburden:andhehimselfsittingaloneathiseasefaroff,withoutanystrainingatall,drawingtheendofanenginewithmanywheelsandpulleys,fairandsoftlywithhishand,madeitcomeasgentlyandsmoothlytohim,asithadfloatedinthesea。Thekingwonderingtoseethesight,andknowingbyproofthegreatnessofhisart;beprayedhimtomakehimsomeengines,bothtoassaultanddefend,inallmannerofsiegesandassaults。SoArchimedesmadehimmanyengines,butKingHieroneveroccupiedanyofthem,becausehereignedthemostpartofhistimeinpeacewithoutanywars。Butthisprovisionandmunitionofengines,servedtheSyracusan’sturnmarvellouslyatthattime:andnotonlytheprovisionoftheenginesreadymade,butalsotheengineerandwork-masterhimself,thathadinventedthem。
"NowtheSyracusans,seeingthemselvesassaultedbytheRomans,bothbyseaandbyland,weremarvellouslyperplexed,andcouldnottellwhattosay,theyweresoafraid:imaginingitwasimpossibleforthemtowithstandsogreatanarmy。ButwhenArchimedesfelltohandlinghisengines,andtosetthematliberty,thereflewintheairinfinitekindsofshot,andmarvellousgreatstones,withanincrediblenoiseandforceonthesudden,uponthefootmenthatcametoassaultthecitybyland,bearingdown,andtearinginpiecesallthosewhichcameagainstthem,orinwhatplacesoevertheylighted,noearthlybodybeingabletoresisttheviolenceofsoheavyaweight:sothatalltheirranksweremarvellouslydisordered。Andasforthegalleysthatgaveassaultbysea,someweresunkwithlongpiecesoftimberlikeuntotheyardsofships,wheretotheyfastentheirsails,whichweresuddenlyblownoverthewallswithforceoftheirenginesintotheirgalleys,andsosunkthembytheirovergreatweight。"
Polybiusdescribeswhatwasperhapsthemostimportantofthesecontrivances,whichwas,hetellsus,"abandofiron,hangingbyachainfromthebeakofamachine,whichwasusedinthefollowingmanner。Thepersonwho,likeapilot,guidedthebeak,havingletfallthehand,andcatchedholdoftheprowofanyvessel,drewdowntheoppositeendofthemachinethatwasontheinsideofthewalls。Andwhenthevesselwasthusraisederectuponitsstem,themachineitselfwasheldimmovable;but,thechainbeingsuddenlyloosenedfromthebeakbythemeansofpulleys,someofthevesselswerethrownupontheirsides,othersturnedwiththebottomupwards;andthegreatestpart,astheprowswereplungedfromaconsiderableheightintothesea,werefilledwithwater,andallthatwereonboardthrownintotumultanddisorder。
"Marcelluswasinnosmalldegreeembarrassed,"Polybiuscontinues,"whenhefoundhimselfencounteredineveryattemptbysuchresistance。Heperceivedthatallhiseffortsweredefeatedwithloss;andwereevenderidedbytheenemy。But,amidstalltheanxietythathesuffered,hecouldnothelpjestingupontheinventionsofArchimedes。Thisman,saidhe,employsourshipsasbucketstodrawwater:andboxingaboutoursackbuts,asiftheywereunworthytobeassociatedwithhim,drivesthemfromhiscompanywithdisgrace。Suchwasthesuccessofthesiegeonthesideofthesea。"
Subsequently,however,Marcellustookthecitybystrategy,andArchimedeswaskilled,contrary,itissaid,totheexpressordersofMarcellus。"Syracusebeingtaken,"saysPlutarch,"nothinggrievedMarcellusmorethanthelossofArchimedes。Who,beinginhisstudywhenthecitywastaken,busilyseekingoutbyhimselfthedemonstrationofsomegeometricalpropositionwhichhehaddrawninfigure,andsoearnestlyoccupiedtherein,asheneithersawnorheardanynoiseofenemiesthatranupanddownthecity,andmuchlessknewitwastaken:hewonderedwhenhesawasoldierbyhim,thatbadehimgowithhimtoMarcellus。
Notwithstanding,hespaketothesoldier,andbadehimtarryuntilhehaddonehisconclusion,andbroughtittodemonstration:butthesoldierbeingangrywithhisanswer,drewouthisswordandkilledhim。Otherssay,thattheRomansoldierwhenhecame,offeredthesword’spointtohim,tokillhim:andthatArchimedeswhenhesawhim,prayedhimtoholdhishandalittle,thathemightnotleavethematterhelookedforimperfect,withoutdemonstration。Butthesoldiermakingnoreckoningofhisspeculation,killedhimpresently。Itisreportedathirdwayalso,sayingthatcertainsoldiersmethiminthestreetsgoingtoMarcellus,carryingcertainmathematicalinstrumentsinalittleprettycoffer,asdialsforthesun,spheres,andangles,wherewiththeymeasurethegreatnessofthebodyofthesunbyview:andtheysupposinghehadcarriedsomegoldorsilver,orotherpreciousjewelsinthatlittlecoffer,slewhimforit。ButitismostcertainthatMarcelluswasmarvellouslysorryforhisdeath,andeverafterhatedthevillainthatslewhim,asacursedandexecrableperson:andhowhehadmadealsomarvellousmuchafterwardsofArchimedes’
kinsmenforhissake。"
WearefurtherindebtedtoPlutarchforasummaryofthecharacterandinfluenceofArchimedes,andforaninterestingsuggestionastotheestimatewhichthegreatphilosopherputupontherelativeimportanceofhisowndiscoveries。
"NotwithstandingArchimedeshadsuchagreatmind,andwassoprofoundlylearned,havinghiddeninhimtheonlytreasureandsecretsofgeometricalinventions:asbewouldneversetforthanybookhowtomakeallthesewarlikeengines,whichwonhimatthattimethefameandglory,notofman’sknowledge,butratherofdivinewisdom。Butheesteemingallkindofhandicraftandinventiontomakeengines,andgenerallyallmannerofsciencesbringingcommoncommoditybytheuseofthem,tobebutvile,beggarly,andmercenarydross:employedhiswitandstudyonlytowritethings,thebeautyandsubtletywhereofwerenotmingledanythingatallwithnecessity。Forallthathehathwritten,aregeometricalpropositions,whicharewithoutcomparisonofanyotherwritingswhatsoever:becausethesubjectwhereoftheytreat,dothappearbydemonstration,themakergivesthemthegraceandthegreatness,andthedemonstrationprovingitsoexquisitely,withwonderfulreasonandfacility,asitisnotrepugnable。Forinallgeometryarenottobefoundmoreprofoundanddifficultmatterswritten,inmoreplainandsimpleterms,andbymoreeasyprinciples,thanthosewhichhehathinvented。
Nowsomedoimputethis,tothesharpnessofhiswitandunderstanding,whichwasanaturalgiftinhim:othersdoreferittotheextremepainshetook,whichmadethesethingscomesoeasilyfromhim,thattheyseemedasiftheyhadbeennotroubletohimatall。Fornomanlivingofhimselfcandevisethedemonstrationofhispropositions,whatpainssoeverhetaketoseekit:andyetstraightsosoonashecomethtodeclareandopenit,everymanthenimaginethwithhimselfhecouldhavefounditoutwellenough,hecanthensoplainlymakedemonstrationofthethinghemeanethtoshow。Andthereforethatmethinksislikelytobetrue,whichtheywriteofhim:thathewassoravishedanddrunkwiththesweetenticementsofthissiren,whichasitwerelaycontinuallywithhim,asheforgothismeatanddrink,andwascarelessotherwiseofhimself,thatoftentimeshisservantsgothimagainsthiswilltothebathstowashandanointhim:andyetbeingthere,hewouldeverbedrawingoutofthegeometricalfigures,evenintheveryimbersofthechimney。Andwhiletheywereanointingofhimwithoilsandsweetsavours,withhisfingerhediddrawlinesuponhisnakedbody:sofarwashetakenfromhimself,andbroughtintoanecstasyortrance,withthedelighthehadinthestudyofgeometry,andtrulyravishedwiththeloveoftheMuses。Butamongstmanynotablethingshedevised,itappeareth,thathemostesteemedthedemonstrationoftheproportionbetweenthecylindertowit,theroundcolumnandthesphereorglobecontainedinthesame:forheprayedhiskinsmenandfriends,thatafterhisdeaththeywouldputacylinderuponhistomb,containingamassysphere,withaninscriptionoftheproportion,whereofthecontinentexceedeththethingcontained。"[2]
ItshouldbeobservedthatneitherPolybiusnorPlutarchmentionstheuseofburning-glassesinconnectionwiththesiegeofSyracuse,norindeedarethesereferredtobyanyotherancientwriterofauthority。Nevertheless,astorygainedcredencedowntoalatedaytotheeffectthatArchimedeshadsetfiretothefleetoftheenemywiththeaidofconcavemirrors。AnexperimentwasmadebySirIsaacNewtontoshowthepossibilityofaphenomenonsowellinaccordwiththegeniusofArchimedes,butthesilenceofalltheearlyauthoritiesmakesitmorethandoubtfulwhetheranysuchexpedientwasreallyadopted。
Itwillbeobservedthatthechiefprincipleinvolvedinallthesemechanismswasacapacitytotransmitgreatpowerthroughleversandpulleys,andthisbringsustothemostimportantfieldoftheSyracusanphilosopher’sactivity。ItwasasastudentoftheleverandthepulleythatArchimedeswasledtosomeofhisgreatestmechanicaldiscoveries。Heisevencreditedwithbeingthediscovererofthecompoundpulley。Morelikelyhewasitsdeveloperonly,sincetheprincipleofthepulleywasknowntotheoldBabylonians,astheirsculpturestestify。ButthereisnoreasontodoubtthegeneraloutlinesofthestorythatArchimedesastoundedKingHierobyprovingthat,withtheaidofmultiplepulleys,thestrengthofonemancouldsufficetodragthelargestshipfromitsmoorings。
Thepropertyofthelever,fromitsfundamentalprinciple,wasstudiedbyhim,beginningwiththeself-evidentfactthat"equalbodiesattheendsoftheequalarmsofarod,supportedonitsmiddlepoint,willbalanceeachother";or,whatamountstothesamethingstatedinanotherway,aregularcylinderofuniformmatterwillbalanceatitsmiddlepoint。Fromthisstarting-pointheelaboratedthesubjectonsuchclearandsatisfactoryprinciplesthattheystandto-daypracticallyunchangedandwithfewadditions。Fromallhisstudiesandexperimentshefinallyformulatedtheprinciplethat"bodieswillbeinequilibriowhentheirdistancefromthefulcrumorpointofsupportisinverselyastheirweight。"Heiscreditedwithhavingsummeduphisestimateofthecapabilitiesoftheleverwiththewell-knownexpression,"Givemeafulcrumonwhichtorestoraplaceonwhichtostand,andIwillmovetheearth。"
Butperhapsthefeatofallothersthatmostappealedtotheimaginationofhiscontemporaries,andpossiblyalsotheonethathadthegreatestbearinguponthepositionofArchimedesasascientificdiscoverer,wastheonemadefamiliarthroughthetaleofthecrownofHiero。Thiscrown,sothestorygoes,wassupposedtobemadeofsolidgold,butKingHieroforsomereasonsuspectedthehonestyofthejeweller,anddesiredtoknowifArchimedescoulddeviseawayoftestingthequestionwithoutinjuringthecrown。Greekimaginationseldomspoiledastoryinthetelling,andinthiscasethetalewasallowedtotakeonthemostpicturesqueofphases。Thephilosopher,weareassured,ponderedtheproblemforalongtimewithoutsucceeding,butonedayashesteppedintoabath,hisattentionwasattractedbytheoverflowofwater。Anewtrainofideaswasstartedinhisever-receptivebrain。Wildwithenthusiasmhesprangfromthebath,and,forgettinghisrobe,dashedalongthestreetsofSyracuse,shouting:"Eureka!Eureka!"Ihavefoundit!Thethoughtthathadcomeintohismindwasthis:Thatanyheavysubstancemusthaveabulkproportionatetoitsweight;thatgoldandsilverdifferinweight,bulkforbulk,andthatthewaytotestthebulkofsuchanirregularobjectasacrownwastoimmerseitinwater。Theexperimentwasmade。Alumpofpuregoldoftheweightofthecrownwasimmersedinacertainreceptaclefilledwithwater,andtheoverflownoted。Thenalumpofpuresilverofthesameweightwassimilarlyimmersed;lastlythecrownitselfwasimmersed,andofcourse——forthestorymustnotlackitsdramaticsequel——wasfoundbulkierthanitsweightofpuregold。Thusthegeniusthatcouldbalkwarriorsandarmiescouldalsofoilthewilesofthesilversmith。
Whateverthetruthofthispicturesquenarrative,thefactremainsthatsome,suchexperimentsasthesemusthavepavedthewayforperhapsthegreatestofallthestudiesofArchimedes——thosethatrelatetothebuoyancyofwater。Leavingthefieldoffable,wemustnowexaminethesewithsomeprecision。Fortunately,thewritingsofArchimedeshimselfarestillextant,inwhichtheresultsofhisremarkableexperimentsarerelated,sowemaypresenttheresultsinthewordsofthediscoverer。
Heretheyare:"First:Thesurfaceofeverycoherentliquidinastateofrestisspherical,andthecentreofthespherecoincideswiththecentreoftheearth。Second:Asolidbodywhich,bulkforbulk,isofthesameweightasaliquid,ifimmersedintheliquidwillsinksothatthesurfaceofthebodyisevenwiththesurfaceoftheliquid,butwillnotsinkdeeper。
Third:Anysolidbodywhichislighter,bulkforbulk,thanaliquid,ifplacedintheliquidwillsinksodeepastodisplacethemassofliquidequalinweighttoanotherbody。Fourth:Ifabodywhichislighterthanaliquidisforciblyimmersedintheliquid,itwillbepressedupwardwithaforcecorrespondingtotheweightofalikevolumeofwater,lesstheweightofthebodyitself。Fifth:Solidbodieswhich,bulkforbulk,areheavierthanaliquid,whenimmersedintheliquidsinktothebottom,butbecomeintheliquidasmuchlighterastheweightofthedisplacedwateritselfdiffersfromtheweightofthesolid。"
Thesepropositionsarenotdifficulttodemonstrate,oncetheyareconceived,buttheirdiscovery,combinedwiththediscoveryofthelawsofstaticsalreadyreferredto,mayjustlybeconsideredasprovingArchimedesthemostinventiveexperimenterofantiquity。
Curiouslyenough,thediscoverywhichArchimedeshimselfissaidtohaveconsideredthemostimportantofallhisinnovationsisonethatseemsmuchlessstriking。Itistheanswertothequestion,Whatistherelationinbulkbetweenasphereanditscircumscribingcylinder?Archimedesfindsthattheratioissimplytwotothree。Wearenotinformedastohowhereachedhisconclusion,butanobviousmethodwouldbetoimmerseaballinacylindricalcup。Theexperimentisonewhichanyonecanmakeforhimself,withapproximateaccuracy,withtheaidofatumblerandasolidrubberballorabilliard-ballofjusttherightsize。
AnothergeometricalproblemwhichArchimedessolvedwastheproblemastothesizeofatrianglewhichhasequalareawithacircle;theanswerbeing,atrianglehavingforitsbasethecircumferenceofthecircleandforitsaltitudetheradius。
Archimedessolvedalsotheproblemoftherelationofthediameterofthecircletoitscircumference;hisanswerbeingacloseapproximationtothefamiliar3。1416,whicheverytyroingeometrywillrecallastheequivalentofpi。
NumerousotherofthestudiesofArchimedeshavingreferencetoconicsections,propertiesofcurvesandspirals,andthelike,aretootechnicaltobedetailedhere。Theextentofhismathematicalknowledge,however,issuggestedbythefactthathecomputedingreatdetailthenumberofgrainsofsandthatwouldberequiredtocoverthesphereofthesun’sorbit,makingcertainhypotheticalassumptionsastothesizeoftheearthandthedistanceofthesunforthepurposesofargument。
Mathematiciansfindhiscomputationpeculiarlyinterestingbecauseitevidencesacrudeconceptionoftheideaoflogarithms。Fromourpresentstand-point,thepaperinwhichthiscalculationiscontainedhasconsiderableinterestbecauseofitsassumptionsastocelestialmechanics。ThusArchimedesstartsoutwiththepreliminaryassumptionthatthecircumferenceoftheearthislessthanthreemillionstadia。Itmustbeunderstoodthatthisassumptionispurelyforthesakeofargument。
Archimedesexpresslystatesthathetakesthisnumberbecauseitis"tentimesaslargeastheearthhasbeensupposedtobebycertaininvestigators。"Here,perhaps,thereferenceistoEratosthenes,whosemeasurementoftheearthweshallhaveoccasiontoreverttoinamoment。Continuing,Archimedesassertsthatthesunislargerthantheearth,andtheearthlargerthanthemoon。Inthisassumption,hesays,heisfollowingtheopinionofthemajorityofastronomers。Inthethirdplace,Archimedesassumesthatthediameterofthesunisnotmorethanthirtytimesgreaterthanthatofthemoon。HereheisprobablybasinghisargumentuponanothersetofmeasurementsofAristarchus,towhich,also,weshallpresentlyrefermoreatlength。Inreality,hisassumptionisveryfarfromthetruth,sincetheactualdiameterofthesun,aswenowknow,issomethinglikefourhundredtimesthatofthemoon。Fourth,thecircumferenceofthesunisgreaterthanonesideofthethousand-facedfigureinscribedinitsorbit。Themeasurement,itisexpresslystated,isbasedonthemeasurementsofAristarchus,whomakesthediameterofthesun1/170ofitsorbit。Archimedesadds,however,thathehimselfhasmeasuredtheangleandthatitappearstohimtobelessthan1/164,andgreaterthan1/200partoftheorbit。Thatistosay,reducedtomodernterminology,heplacesthelimitofthesun’sapparentsizebetweenthirty-threeminutesandtwenty-sevenminutesofarc。Astherealdiameteristhirty-twominutes,thiscalculationissurprisinglyexact,consideringtheimplementsthenatcommand。ButthehonoroffirstmakingitmustbegiventoAristarchusandnottoArchimedes。
WeneednotfollowArchimedestothelimitsofhisincomprehensiblenumbersofsand-grains。Thecalculationischieflyremarkablebecauseitwasmadebeforetheintroductionoftheso-calledArabicnumeralshadsimplifiedmathematicalcalculations。ItwillberecalledthattheGreeksusedlettersfornumerals,and,havingnocipher,theysoonfoundthemselvesindifficultieswhenlargenumberswereinvolved。TheRomansystemofnumeralssimplifiedthemattersomewhat,butthebeautifulsimplicityofthedecimalsystemdidnotcomeintovogueuntiltheMiddleAges,asweshallsee。Notwithstandingthedifficulties,however,Archimedesfollowedouthiscalculationstothepilingupofbewilderingnumbers,whichthemodernmathematicianfindstobetheconsistentoutcomeoftheproblemhehadsethimself。
Butitremainstonoticethemostinterestingfeatureofthisdocumentinwhichthecalculationofthesand-grainsiscontained。"Itwasknowntome,"saysArchimedes,"thatmostastronomersunderstandbytheexpression’world’universeaballofwhichthecentreisthemiddlepointoftheearth,andofwhichtheradiusisastraightlinebetweenthecentreoftheearthandthesun。"Archimedeshimselfappearstoacceptthisopinionofthemajority,——itatleastservesaswellasthecontraryhypothesisforthepurposeofhiscalculation,——buthegoesontosay:"AristarchusofSamos,inhiswritingagainsttheastronomers,seekstoestablishthefactthattheworldisreallyverydifferentfromthis。Heholdstheopinionthatthefixedstarsandthesunareimmovableandthattheearthrevolvesinacircularlineaboutthesun,thesunbeingatthecentreofthiscircle。"ThisremarkablebitoftestimonyestablishesbeyondquestionthepositionofAristarchusofSamosastheCopernicusofantiquity。Wemustmakefurtherinquiryastotheteachingsofthemanwhohadgainedsucharemarkableinsightintothetruesystemoftheheavens。
ItappearsthatAristarchuswasacontemporaryofArchimedes,buttheexactdatesofhislifearenotknown。HewasactivelyengagedinmakingastronomicalobservationsinSamossomewhatbeforethemiddleofthethirdcenturyB。C。;inotherwords,justatthetimewhentheactivitiesoftheAlexandrianschoolwereattheirheight。Hipparchus,atalaterday,wasenabledtocomparehisownobservationswiththosemadebyAristarchus,and,aswehavejustseen,hisworkwaswellknowntosodistantacontemporaryasArchimedes。Yetthefactsofhislifearealmostablankforus,andofhiswritingsonlyasingleonehasbeenpreserved。Thatone,however,isamostimportantandinterestingpaperonthemeasurementsofthesunandthemoon。Unfortunately,thispapergivesusnodirectclewastotheopinionsofAristarchusconcerningtherelativepositionsoftheearthandsun。ButthetestimonyofArchimedesastothisisunequivocal,andthistestimonyissupportedbyotherrumorsinthemselveslessauthoritative。
IncontemplatingthisastronomerofSamos,then,weareinthepresenceofamanwhohadsolvedinitsessentialstheproblemofthemechanismofthesolarsystem。ItappearsfromthewordsofArchimedesthatAristarchus;hadpropoundedhistheoryinexplicitwritings。Unquestionably,then,heheldtoitasapositivedoctrine,notasamerevagueguess。Weshallshow,inamoment,onwhatgroundshebasedhisopinion。Hadhisteachingfoundvogue,thestoryofsciencewouldbeverydifferentfromwhatitis。WeshouldthenhavenotaletotellofaCopernicuscominguponthescenefullyseventeenhundredyearslaterwiththerevolutionarydoctrinethatourworldisnotthecentreoftheuniverse。WeshouldnothavetotellofthepersecutionofaBrunoorofaGalileoforteachingthisdoctrineintheseventeenthcenturyofanerawhichdidnotbegintilltwohundredyearsafterthedeathofAristarchus。But,asweknow,theteachingoftheastronomerofSamosdidnotwinitsway。Theoldconservativegeocentricdoctrine,seeminglysomuchmoreinaccordancewiththeevery-dayobservationsofmankind,supportedbythemajorityofastronomerswiththePeripateticphilosophersattheirhead,helditsplace。ItfoundfreshsupporterspresentlyamongthelaterAlexandrians,andsofullyeclipsedtheheliocentricviewthatweshouldscarcelyknowthatviewhadevenfoundanadvocatewereitnotforhereandtheresuchachancerecordasthephraseswehavejustquotedfromArchimedes。Yet,aswenowsee,theheliocentricdoctrine,whichweknowtobetrue,hadbeenthoughtoutandadvocatedasthecorrecttheoryofcelestialmechanicsbyatleastoneworkerofthethirdcenturyB。C。Suchanidea,wemaybesure,didnotspringintothemindofitsoriginatorexceptastheculminationofalongseriesofobservationsandinferences。Theprecisecharacteroftheevolutionweperhapscannottrace,butitsbroaderoutlinesareopentoourobservation,andwemaynotleavesoimportantatopicwithoutatleastbrieflynotingthem。
FullytounderstandthetheoryofAristarchus,wemustgobackacenturyortwoandrecallthataslongagoasthetimeofthatothergreatnativeofSamos,Pythagoras,theconceptionhadbeenreachedthattheearthisinmotion。Wesaw,indealingwithPythagoras,thatwecouldnotbesureastopreciselywhathehimselftaught,butthereisnoquestionthattheideaoftheworld’smotionbecamefromanearlydayaso-calledPythagoreandoctrine。Whilealltheotherphilosophers,sofarasweknow,stillbelievedthattheworldwasflat,thePythagoreansoutinItalytaughtthattheworldisasphereandthattheapparentmotionsoftheheavenlybodiesarereallyduetotheactualmotionoftheearthitself。Theydidnot,however,vaulttotheconclusionthatthistruemotionoftheearthtakesplaceintheformofacircuitaboutthesun。Insteadofthat,theyconceivedthecentralbodyoftheuniversetobeagreatfire,invisiblefromtheearth,becausetheinhabitedsideoftheterrestrialballwasturnedawayfromit。Thesun,itwasheld,isbutagreatmirror,whichreflectsthelightfromthecentralfire。Sunandearthalikerevolveaboutthisgreatfire,eachinitsownorbit。Betweentheearthandthecentralfiretherewas,curiouslyenough,supposedtobeaninvisibleearthlikebodywhichwasgiventhenameofAnticthon,orcounter-earth。Thisbody,itselfrevolvingaboutthecentralfire,wassupposedtoshutoffthecentrallightnowandagainfromthesunorfromthemoon,andthustoaccountforcertaineclipsesforwhichtheshadowoftheearthdidnotseemresponsible。Itwas,perhaps,largelytoaccountforsucheclipsesthatthecounter-earthwasinvented。Butitissupposedthattherewasanotherreason。ThePythagoreansheldthatthereisapeculiarsacrednessinthenumberten。JustastheBabyloniansoftheearlydayandtheHegelianphilosophersofamorerecentepochsawasacredconnectionbetweenthenumbersevenandthenumberofplanetarybodies,sothePythagoreansthoughtthattheuniversemustbearrangedinaccordancewiththenumberten。Theircountoftheheavenlybodies,includingthesphereofthefixedstars,seemedtoshownine,andthecounter-earthsuppliedthemissingbody。
Theprecisegenesisanddevelopmentofthisideacannotnowbefollowed,butthatitwasprevalentaboutthefifthcenturyB。C。
asaPythagoreandoctrinecannotbequestioned。Anaxagorasalsoissaidtohavetakenaccountofthehypotheticalcounter-earthinhisexplanationofeclipses;though,aswehaveseen,heprobablydidnotacceptthatpartofthedoctrinewhichheldtheearthtobeasphere。ThenamesofPhilolausandHeraclideshavebeenlinkedwithcertainofthesePythagoreandoctrines。Eudoxus,too,who,liketheothers,livedinAsiaMinorinthefourthcenturyB。C。,washeldtohavemadespecialstudiesoftheheavenlyspheresandperhapstohavetaughtthattheearthmoves。
So,too,Nicetasmustbenamedamongthosewhomrumorcreditedwithhavingtaughtthattheworldisinmotion。Inaword,theevidence,sofaraswecangarneritfromtheremainingfragments,tendstoshowthatallalong,fromthetimeoftheearlyPythagoreans,therehadbeenanundercurrentofopinioninthephilosophicalworldwhichquestionedthefixityoftheearth;
anditwouldseemthattheschoolofthinkerswhotendedtoaccepttherevolutionaryviewcentredinAsiaMinor,notfarfromtheearlyhomeofthefounderofthePythagoreandoctrines。Itwasnotstrange,then,thatthemanwhowasfinallytocarrythesenewopinionstotheirlogicalconclusionshouldhailfromSamos。
Butwhatwasthesupportwhichobservationcouldgivetothisnew,strangeconceptionthattheheavenlybodiesdonotinrealitymoveastheyseemtomove,butthattheirapparentmotionisduetotheactualrevolutionoftheearth?Itisextremelydifficultforanyonenowadaystoputhimselfinamentalpositiontoanswerthisquestion。Wearesoaccustomedtoconceivethesolarsystemasweknowittobe,thatwearewonttoforgethowverydifferentitisfromwhatitseems。Yetoneneedsbuttoglanceupatthesky,andthentoglanceaboutoneatthesolidearth,togrant,onamoment’sreflection,thatthegeocentricideaisofallothersthemostnatural;andthattoconceivethesunastheactualCentreofthesolarsystemisanideawhichmustlookforsupporttosomeotherevidencethanthatwhichordinaryobservationcangive。Suchwastheviewofmostoftheancientphilosophers,andsuchcontinuedtobetheopinionofthemajorityofmankindlongafterthetimeofCopernicus。WemustnotforgetthatevensogreatanobservingastronomerasTychoBrahe,solateastheseventeenthcentury,declinedtoaccepttheheliocentrictheory,thoughadmittingthatalltheplanetsexcepttheearthrevolveaboutthesun。WeshallseethatbeforetheAlexandrianschoollostitsinfluenceageocentricschemehadbeenevolvedwhichfullyexplainedalltheapparentmotionsoftheheavenlybodies。Allthis,then,makesusbutwonderthemorethatthegeniusofanAristarchuscouldgiveprecedencetoscientificinductionasagainsttheseeminglyclearevidenceofthesenses。
What,then,wasthelineofscientificinductionthatledAristarchustothiswonderfulgoal?Fortunately,weareabletoanswerthatquery,atleastinpart。Aristarchusgainedhisevidencethroughsomewonderfulmeasurements。First,hemeasuredthedisksofthesunandthemoon。This,ofcourse,couldinitselfgivehimnoclewtothedistanceofthesebodies,andthereforenoclewastotheirrelativesize;butinattemptingtoobtainsuchaclewhehituponawonderfulyetaltogethersimpleexperiment。Itoccurredtohimthatwhenthemoonispreciselydichotomized——thatistosay,preciselyatthehalf-thelineofvisionfromtheearthtothemoonmustbepreciselyatrightangleswiththelineoflightpassingfromthesuntothemoon。
Atthismoment,then,theimaginarylinesjoiningthesun,themoon,andtheearth,makearightangletriangle。Butthepropertiesoftheright-angletrianglehadlongbeenstudiedandwerewellunderstood。Oneacuteangleofsuchatriangledeterminesthefigureofthetriangleitself。WehavealreadyseenthatThales,theveryearliestoftheGreekphilosophers,measuredthedistanceofashipatseabytheapplicationofthisprinciple。NowAristarchussightsthesuninplaceofThales’
ship,and,sightingthemoonatthesametime,measurestheangleandestablishestheshapeofhisright-angletriangle。Thisdoesnottellhimthedistanceofthesun,tobesure,forhedoesnotknowthelengthofhisbase-line——thatistosay,ofthelinebetweenthemoonandtheearth。Butitdoesestablishtherelationofthatbase-linetotheotherlinesofthetriangle;inotherwords,ittellshimthedistanceofthesunintermsofthemoon’sdistance。AsAristarchusstrikestheangle,itshowsthatthesuniseighteentimesasdistantasthemoon。Now,bycomparingtheapparentsizeofthesunwiththeapparentsizeofthemoon——which,aswehaveseen,Aristarchushasalreadymeasured——heisabletotellusthat,thesunis"morethan5832
times,andlessthan8000"timeslargerthanthemoon;thoughhismeasurements,takenbythemselves,givenoclewtotheactualbulkofeitherbody。Theseconclusions,beitunderstood,areabsolutelyvalidinferences——nay,demonstrations——fromthemeasurementsinvolved,providedonlythatthesemeasurementshavebeencorrect。Unfortunately,theangleofthetrianglewehavejustseenmeasuredisexceedinglydifficulttodeterminewithaccuracy,whileatthesametime,asamoment’sreflectionwillshow,itissolargeananglethataveryslightdeviationfromthetruthwillgreatlyaffectthedistanceatwhichitslinejoinstheothersideofthetriangle。Thenagain,itisvirtuallyimpossibletotelltheprecisemomentwhenthemoonisathalf,asthelineitgivesisnotsosharpthatwecanfixitwithabsoluteaccuracy。Thereis,moreover,anotherelementoferrorduetotherefractionoflightbytheearth’satmosphere。Theexperimentwasprobablymadewhenthesunwasnearthehorizon,atwhichtime,aswenowknow,butasAristarchusprobablydidnotsuspect,theapparentdisplacementofthesun’spositionisconsiderable;andthisdisplacement,itwillbeobserved,isinthedirectiontolessentheangleinquestion。
Inpointoffact,Aristarchusestimatedtheangleateighty-sevendegrees。Hadhisinstrumentbeenmoreprecise,andhadhebeenabletotakeaccountofalltheelementsoferror,hewouldhavefounditeighty-sevendegreesandfifty-twominutes。Thedifferenceofmeasurementseemsslight;butitsufficedtomakethecomputationsdifferabsurdlyfromthetruth。Thesunisreallynotmerelyeighteentimesbutmorethantwohundredtimesthedistanceofthemoon,asWendeleindiscoveredonrepeatingtheexperimentofAristarchusabouttwothousandyearslater。YetthisdiscrepancydoesnotintheleasttakeawayfromthevalidityofthemethodwhichAristarchusemployed。Moreover,hisconclusion,statedingeneralterms,wasperfectlycorrect:thesunismanytimesmoredistantthanthemoonandvastlylargerthanthatbody。Granted,then,thatthemoonis,asAristarchuscorrectlybelieved,considerablylessinsizethantheearth,thesunmustbeenormouslylargerthantheearth;andthisisthevitalinferencewhich,morethananyother,musthaveseemedtoAristarchustoconfirmthesuspicionthatthesunandnottheearthisthecentreoftheplanetarysystem。Itseemedtohiminherentlyimprobablethatanenormouslylargebodylikethesunshouldrevolveaboutasmallonesuchastheearth。Andagain,itseemedinconceivablethatabodysodistantasthesunshouldwhirlthroughspacesorapidlyastomakethecircuitofitsorbitintwenty-fourhours。But,ontheotherhand,thatasmallbodyliketheearthshouldrevolveaboutthegiganticsunseemedinherentlyprobable。Thispropositiongranted,therotationoftheearthonitsaxisfollowsasanecessaryconsequenceinexplanationoftheseemingmotionofthestars。Here,then,wastheheliocentricdoctrinereducedtoavirtualdemonstrationbyAristarchusofSamos,somewhereaboutthemiddleofthethirdcenturyB。C。
Itmustbeunderstoodthatinfollowingoutthe,stepsofreasoningbywhichwesupposeAristarchustohavereachedsoremarkableaconclusion,wehavetosomeextentguessedattheprocessesofthought-development;fornolineofexplicationwrittenbytheastronomerhimselfonthisparticularpointhascomedowntous。Theredoesexist,however,aswehavealreadystated,averyremarkabletreatisebyAristarchusontheSizeandDistanceoftheSunandtheMoon,whichsoclearlysuggeststhemethodsofreasoningofthegreatastronomer,andsoexplicitlycitestheresultsofhismeasurements,thatwecannotwellpassitbywithoutquotingfromitatsomelength。Itiscertainlyoneofthemostremarkablescientificdocumentsofantiquity。Asalreadynoted,theheliocentricdoctrineisnotexpresslystatedhere。Itseemstobetacitlyimpliedthroughout,butitisnotanecessaryconsequenceofanyofthepropositionsexpresslystated。ThesepropositionshavetodowithcertainobservationsandmeasurementsandwhatAristarchusbelievestobeinevitabledeductionsfromthem,andheperhapsdidnotwishtohavethesedeductionschallengedthroughassociatingthemwithatheorywhichhiscontemporariesdidnotaccept。Inaword,thepaperofAristarchusisarigidlyscientificdocumentunvitiatedbyassociationwithanytheorizingsthatarenotdirectlygermanetoitscentraltheme。Thetreatiseopenswithcertainhypothesesasfollows:
"First。Themoonreceivesitslightfromthesun。
"Second。Theearthmaybeconsideredasapointandasthecentreoftheorbitofthemoon。
"Third。Whenthemoonappearstousdichotomizeditofferstoourviewagreatcircle[oractualmeridian]ofitscircumferencewhichdividestheilluminatedpartfromthedarkpart。
"Fourth。Whenthemoonappearsdichotomizeditsdistancefromthesunislessthanaquarterofthecircumference[ofitsorbit]byathirtiethpartofthatquarter。"
Thatistosay,inmodernterminology,themoonatthistimelacksthreedegreesonethirtiethofninetydegreesofbeingatrightangleswiththelineofthesunasviewedfromtheearth;
or,statedotherwise,theangulardistanceofthemoonfromthesunasviewedfromtheearthisatthistimeeighty-sevendegrees——thisbeing,aswehavealreadyobserved,thefundamentalmeasurementuponwhichsomuchdepends。WemayfairlysupposethatsomepreviouspaperofAristarchus’shasdetailedthemeasurementwhichhereistakenforgranted,yetwhichofcoursecoulddependsolelyonobservation。
"Fifth。Thediameteroftheshadow[castbytheearthatthepointwherethemoon’sorbitcutsthatshadowwhenthemooniseclipsed]isdoublethediameterofthemoon。"
Hereagainaknowledgeofpreviouslyestablishedmeasurementsistakenforgranted;but,indeed,thisisthecasethroughoutthetreatise。
"Sixth。Thearcsubtendedintheskybythemoonisafifteenthpartofasign"ofthezodiac;thatistosay,sincetherearetwenty-four,signsinthezodiac,one-fifteenthofonetwenty-fourth,orinmodernterminology,onedegreeofarc。ThisisAristarchus’smeasurementofthemoontowhichwehavealreadyreferredwhenspeakingofthemeasurementsofArchimedes。
"Ifweadmitthesesixhypotheses,"Aristarchuscontinues,"itfollowsthatthesunismorethaneighteentimesmoredistantfromtheearththanisthemoon,andthatitislessthantwentytimesmoredistant,andthatthediameterofthesunbearsacorrespondingrelationtothediameterofthemoon;whichisprovedbythepositionofthemoonwhendichotomized。Buttheratioofthediameterofthesuntothatoftheearthisgreaterthannineteentothreeandlessthanforty-threetosix。Thisisdemonstratedbytherelationofthedistances,bytheposition[ofthemoon]inrelationtotheearth’sshadow,andbythefactthatthearcsubtendedbythemoonisafifteenthpartofasign。"
Aristarchusfollowswithnineteenpropositionsintendedtoelucidatehishypothesesandtodemonstratehisvariouscontentions。Theseshowasingularlycleargraspofgeometricalproblemsandanaltogethercorrectconceptionofthegeneralrelationsastosizeandpositionoftheearth,themoon,andthesun。Hisreasoninghastodolargelywiththeshadowcastbytheearthandbythemoon,anditpresupposesaconsiderableknowledgeofthephenomenaofeclipses。Hisfirstpropositionisthat"twoequalspheresmayalwaysbecircumscribedinacylinder;twounequalspheresinaconeofwhichtheapexisfoundonthesideofthesmallersphere;andastraightlinejoiningthecentresofthesespheresisperpendiculartoeachofthetwocirclesmadebythecontactofthesurfaceofthecylinderoroftheconewiththespheres。"
ItwillbeobservedthatAristarchushasinmindherethemoon,theearth,andthesunasspherestobecircumscribedwithinacone,whichconeismadetangibleandmeasurablebytheshadowscastbythenon-luminousbodies;since,continuing,heclearlystatesinpropositionnine,that"whenthesunistotallyeclipsed,anobserverontheearth’ssurfaceisatanapexofaconecomprisingthemoonandthesun。"Variouspropositionsdealwithotherrelationsoftheshadowswhichneednotdetainussincetheyarenotfundamentallyimportant,andwemaypasstothefinalconclusionsofAristarchus,asreachedinhispropositionstentonineteen。
Now,sincepropositionten"thediameterofthesunismorethaneighteentimesandlessthantwentytimesgreaterthanthatofthemoon,"itfollowspropositioneleven"thatthebulkofthesunistothatofthemooninratio,greaterthan5832to1,andlessthan8000to1。"
"Propositionsixteen。Thediameterofthesunistothediameteroftheearthingreaterproportionthannineteentothree,andlessthanforty-threetosix。
"Propositionseventeen。Thebulkofthesunistothatoftheearthingreaterproportionthan6859to27,andlessthan79,507
to216。
"Propositioneighteen。Thediameteroftheearthistothediameterofthemooningreaterproportionthan108to43andlessthan60to19。
"Propositionnineteen。Thebulkoftheearthistothatofthemooningreaterproportionthan1,259,712to79,507andlessthan20,000to6859。"
Suchthenarethemoreimportantconclusionsofthisveryremarkablepaper——apaperwhichseemstohaveinteresttothesuccessorsofAristarchusgenerationaftergeneration,sincethisaloneofallthewritingsofthegreatastronomerhasbeenpreserved。HowwidelytheexactresultsofthemeasurementsofAristarchus,differfromthetruth,wehavepointedoutasweprogressed。Butletitberepeatedthatthisdetractslittlefromthecreditoftheastronomerwhohadsuchclearandcorrectconceptionsoftherelationsoftheheavenlybodiesandwhoinventedsuchcorrectmethodsofmeasurement。Letitbeparticularlyobserved,however,thatalltheconclusionsofAristarchusarestatedinrelativeterms。Henowhereattemptstoestimatetheprecisesizeoftheearth,ofthemoon,orofthesun,ortheactualdistanceofoneofthesebodiesfromanother。
Theobviousreasonforthisisthatnodatawereathandfromwhichtomakesuchprecisemeasurements。HadAristarchusknownthesizeofanyoneofthebodiesinquestion,hemightreadily,ofcourse,havedeterminedthesizeoftheothersbythemereapplicationofhisrelativescale;buthehadnomeansofdeterminingthesizeoftheearth,andtothisextenthissystemofmeasurementsremainedimperfect。WhereAristarchushalted,however,anotherworkerofthesameperiodtookthetaskinhandandbyanaltogetherwonderfulmeasurementdeterminedthesizeoftheearth,andthusbroughtthescientifictheoriesofcosmologytotheirclimax。ThisworthysupplementoroftheworkofAristarchuswasEratosthenesofAlexandria。