首页 >出版文学> 数学原理>第81章

第81章

最后是类比假设,这个假设的最重要的作用是证明别人心里的信仰是有充分理由的。这个假设述之如下:
假定有A和B两类事件,并且假定只要能见到A和B的时候,就有理由相信A引起了B,那么,如果在某一种情形下,A是见到了,但是无法见到是否有B,则大概会有B发生;同样,如果见到有B发生,但是见不到A还是没有A,也大概有A发生。
我再说一遍,以上这些假设之为正当,都由于这样一个事实,就是,在所有我们认为能成立的推理中都蕴含着这些假设,而且,虽然在形式上不能对于这些假设加以证明,但科学的整个系统和日常的知识(这些假设是从中提取出来的)在某些限度内是可能由本身取得证实的。我并不承认真理的相合说,但是有一个”盖然性“的相合说,这个盖然性的相合说是很重要的,而我认为是有效的。假定你有两件事实和连接这两件事实的一个因果原理,这三者合起来的盖然性就可能大于其中之一的盖然性,而且这互相连接的事实和原理越多越复杂,则由其互相相合而来的盖然性就越增加起来。要知道,若不把原理引进来,一堆假定的事实既不能说是相合,也不能说是相抵触,因为若不靠逻辑外的原理,无论两种什么事实都不能彼此相蕴含或者相矛盾。我相信,上述的五种原理或与之类似的某种东西可以作那种相合的基础,那种相合能够产生我们所讨论的那种增高的盖然性。一种什么笼统称之为”因果关系“或者”自然的一致性“的东西出现在许多科学方法的讨论中。我的这些假设的目的是拿一种更确切、更有效的东西来代替这些笼统含混的原理。我对于上述的这些假设没有十分大的自信,但是我深信,如果我们想证明非证明的推理是正当的(事实上没人会怀疑这种推理),象上边列举的假设那一类的东西是不能没有的。
自从我着手写《数学原理》,我就有了一个方法。我最初不大意识到这个方法,但是在我的思想里这个方法慢慢地变得越来越明确了。这个方法乃是想建造一座桥梁来沟通感觉世界和科学世界。我认为这两个世界在大体上是无可致疑的。
就好象造一个阿尔卑斯山洞,工作必须从两头儿进行,希望最后是在中间相遇来完工。
我们先对一些科学知识加以分析,所有的科学上的知识都是用一些人造的实体,其目的是在易于用某种计算方法来处理。科学越高深,这话越能适用。在各种经验科学中,这话最能完全适用于物理学。在一种高深的科学中,例如物理学,哲学家的初步工作是要人明白这一门科学是一个演绎的系统,这个系统开头是几个原理(其余都是从这几个原理沿着逻辑的必然结果向前进),还有一些实在的或假定的实体,用这些实体,凡这门科学所论列的东西都可以加以说明(至少在理论上是如此)。如果这项工作做得好,在分析之后所余留下的那些原理和实体可以算做是这一门整个科学的抵押品,哲学家就不必再去理会这门科学所包含的其余复杂的知识了。
但是没有一门经验科学只是意在成为一篇能自圆其说的童话,而是意在包含一些命题能用于实在的世界,并且因为这些命题和实在世界的关系而使人相信这些命题之为真。即使科学上最抽象的那些部分,例如广义相对论,也因为有观察到的事实而为人所承认。所以哲学家就不能不研究观察到的事实和科学的抽象二者之间的关系。这是一件繁难的工作。
其所以困难,其中的一个原因是,我们的起点是常识,而常识是已经沾染上了理论,虽然这种理论是粗糙简陋的。我们以为我们所观察到的是不止我们实际上所观察到的,其所增益的那一部分是常识的形而上学和科学所增添的。我并不是说,我们应该完全否认常识上的形而上学和科学,而是说,这也是我们所必须研究的一部分。它一方面不属于用公式表示的科学这个极端,一方面也不属于纯粹的观察那个极端。