首页 >出版文学> 科学史及与哲学和宗教的关系(下)>第61章
这些事实被人认为指明了一个确定的结论:即所有的恒星都经过一个大体相同的演化过程。每颗恒星最初是一较冷的物体,嗣后温度渐渐增高,而达到最高温度(视其大小而定),然后再渐趋冷却,温度渐次下降,经历一个相反的过程。
当恒星温度升高时,它发出大量的光,这意味着它的体积很大,因而归类为“巨星”。但当其冷却时,它的大气在温度方面经历一个与以前相反的过程,在冷却时所经过的光谱型,虽然在细节上略有差异;但大体上与温度升高时期所经过的相同。然而这颗星现在的绝对星等,换言之即其光度,却比较以前小得多了。既然这时温度与以前上升时期相同,这一事实就表示这颗星的体积较前为小,遂成为“矮星”了。
这是罗素所阐述的恒星演化过程,与勒恩和利特尔(Ritter)所阐明的互相吸引的气体团的动力学相符合。如果这团气的质量够大,则重力必定使它收缩。它将放出热量而变热。但当其收缩时,其收缩的速率必逐渐减少。到了某一临界密度时,这一庞大的炽热气团所生的热量,将小于其所辐射的热量,于是这团物质开始冷却。我们在讨论太阳的年龄时说过,这过程不能解释其所放出的全部热量,那时已经认为或有他种能量的来源(如原子的蜕变)取决于温度,并经过一种相似的过程。
这个恒星演化的理论,已经根据最近的研究加以修正,而将原子结构的新知识应用于天体物理学。人类靠了他处在原子与恒星中间的有利位置,可以利用由一方所得的知识,作为研究另一方的参考。
已知太阳或任何一颗星的大小与平均密度,并假定其整体都是气体,就可以计算其表面下压力随深度而增加的变率,爱丁顿便做了这个计算。对于气体的恒星,爱丁顿发现光度主要随质量而变化,在某些限度内,光度粗略地与质量成正比例。在恒星里任一层,其上面的压力,为下面气体的弹力和辐射的压力所支撑。据分子运动论,气体的弹性,是由于气体分子的碰撞造成的,而气体分子的速度随温度而变化。要支持太阳或其类似的恒星内部的巨大压力,则其温度当达四千万度至五千万度的数量级。如有一星比这个大得多,据爱丁顿推算,其内部的辐射压必至过大,致使它变成不稳定,而趋于爆裂。这样,星的大小有一自然的上限。
恒星内部的一个区域,甚至一大区域,实际是一个恒温的包亮,其总辐射按绝对温度的四乘方而改变。当温度增高时,在光谱上能量最大的辐射,按已知定律,逐渐变为波长较短的波。当温度高达数百万度时,则其最大能量便远远超过可见光谱的波段,而至X射线或波长更短的辐射区域,但这些辐射,在其行至恒星外层的途程中,不断地受到原子的碰撞与作用,因而变成波长较长的辐射,最后仍以光和热的形式发出。但有一引人注意的事实:即富有极大穿透力的射线(即“宇宙线”),已经为麦克伦南(McLennan)、米利根、科赫斯特等人所发现,这些射线,虽然份量很小,好象经过我们的大气,而来自空间。秦斯说:“在某一意义上,这种辐射是整个宇宙里最基本的物理现象,空间的大部区域合这种辐射远较可见光和热为多。我们的身体日夜被它穿过,……它破坏我们体内的原子每秒达数百万个。这可能是生命的要素,也可能在杀害我们”。有人说这种富穿透力的辐射是质子和电子互相湮灭时,或者氢聚合为重原子时所发出的,地点可能是在星云或空间里极度稀薄的物质里,因为由那里所射出的能量无须费力就可以穿过覆在恒星外部的物质。
我们知道X射线和穿透性更大的Y射线是极有效的电离剂。所以星内的原子当是高度电离的,即其外部电子都被剥夺了的;这个概念于1917年为秦斯所倡导,以后更为许多人研究。一个普通原子所占有的体积,即别的原子不能贯穿的体积,就是这些外部电子的轨道所占有的体积。如其外部电子遭到剥夺,则这原子的有效体积必大为减小,实际成为原子核与其最近电子环(其轨道较外部电子的轨道小得多)的体积。结果,恒星内部的原子既然小得多,则其相互干扰也必远较我们实验室的为小;因而恒星物质虽在高密度下,其性质也象“理想气体”,而遵守波义耳定律。
假设恒星是气体的,则我们可以数学计算一颗星的质量与其所发的光和热之量的关系,换言之,即可知其光度为何。1924年,爱丁顿算得星的质量愈大则其辐射也愈大。他求得一个理论的关系,而且在把一个数字因子调整以后,使这个关系确与事实符合。就是对于某些恒星,这个公式也是适用的。因其密度很大,在1924年以前人们还认为它们是液体或固体的,而且以为这一理论不适用于它们。但爱丁顿认为,较水重的太阳,以及较铁重的其他恒星,实际上都是气体;因其电子已被剥夺,所以这些恒星的原子体积较小,在大部时间内,彼此不相接近。
而且一个新发现使密度的可能范围更加扩大了。1844年,贝塞耳发现天空最亮的天狼星运行在椭圆轨道上,于是他假设有一伴星围绕天狼星运行,其质量约为太阳的4/5。十八年后,这颗星为克拉克(Alvan
Clark)所发现;用现代望远镜不难看见这颗星,其所发的光约为太阳的1/360。当时曾认为这颗星是红热的、一个行将没落的星。亚当斯在威尔逊山查得这颗星并非红热而是白热的。其所发的总光量很小,是由于其体积很小;它不比地球大很多。从这个大的质量与小的体积,得知其密度约为每立方英寸一吨,这是一个骇人听闻的结果,在当时认为是不可信的。
但是不久新的证据出现了。根据爱因斯坦的理论,物体发出辐射的频率,应随其质量和体积而不同;因此谱线应按半径除质量的比例向红端移动。亚当斯测量了天狼伴星的光谱,也得着相同的高密度,约为铂的密度的两千倍。现在更发现另外几颗星,密度与此相似或更大。秦斯认为这些星中的物质不再是气体,而与液体相近了。其原子很可能只余下原子核,甚至其最内层的电子也被剥夺。比较正常的星,如天狼星与太阳,可能为核外剩有一层电子的原子所组成。所以根据原子结构的理论,我们就可以解释这一事实:恒星分为明显的几类,而且每一类仅包括某些体积限度内的恒星。在那样高的温度下,地上的原子将会完全破裂。要维持这些不同的体积,恒星内部未知的深度的原子必较我们熟悉的地球上的原子为重,而类似地球上的原子的较轻的原子,必浮在表面,而成为辐射的表层。