首页 >出版文学> 科学史及与哲学和宗教的关系(下)>第53章
1919年,阿斯顿的第一台质谱仪使用之后,研究成果纷至沓来。两条确定的谱线证实了汤姆生研究氖的结果,在某一时规里差不多每个星期都有新的同位素发现。1933年,阿斯顿在他的《质谱与同位素》(Mass
Spectraand
Isotopes)一书中说:“在一切已知有相当数量存在的元素里,现在只有18个还没有分析过”。到1935年,人们已经知道有250种稳定的同位素了。最复杂的元素好象是锡,它有11种同位素,其质量数目112至124。根据这些实验,普劳特首先提出的原子量是整数的规律,已经得到证实。210这个数字以下,差不多每一个数字都有一个稳定的基本原子。许多位置,两次或三次被某些同位素占去,它们叫做“同量异位素”,换句话说,即是重量相同而化学性质不同的原子。
如上所述,α和β粒子的性质已为卢瑟福早期关于放射现象的研究所肯定了。a粒子是氦原子核,根据阿斯顿的测量,它包含一个4.0029(氧取为16)的核质量和一个阳电荷+2e,即两倍于电子上的阴电荷-e。a粒子运动的速度在每秒2×109厘米或10,000英里左右。氢原子核或质子,包含1.0076的质量与一阳电荷+e。伯奇(Birge)指出,事实表明有氢的重同位素存在,同时吉奥克(Giauque)与约翰逊(Johnson),继后有梅克(Mecke),根据观察带状光谱的结果,取得质量为17与19的重氧存在的证据。
1932年尤雷(Urey)用分馏法发现氢的同位素,其质量为2,等于正常氢的两倍,在一般氢元素里仅占1/4000。这种重氢(2H)叫做“氘”(D)。如果使电荷从其中通过,有些原子失掉一个电子,而成为正离子,被人叫做“氘核”。它们好象是质子和中子联系在一起的结构。瓦什伯恩(Washburn)把普通水电离,得到一种新物质:重水,其中氢为其同位素氘所代替。重水为刘易斯所分出,密度比寻常水大11%,而其冰点与沸点也不相同。现在已能制造重水,中性氢(1H)的质量可以更准确地测定,其值为1.00812。
还有另外一些时常穿过大气而来、贯穿力更强的射线,可以在威尔逊云室内探测出来。它们的来源好象在宇宙空间里。这些年来有很多人去研究它们,特别是米利根和他的同事们。这问题可以说开始于1909年,起初是格克耳(Gockel),后来是海斯(Hess)与科赫斯特(Kolhorster),都发现验电器放在升空气球上,比在地面放电更快。这说明位置愈高,造成电离的射线愈多。1922年,包温(Bowen)与米利根将这些实验拿到55,000尺的高空去做,1925年米利根与卡梅伦(Cameron)将验电器逐渐下沉到70尺深的没有镜的水里而发现放电率连续减少。在以后的年份里,有些观测者走得更远。这些射线的贯穿力比地上任何射线都大。地磁对于这些射线的效应,说明其来源不在高层大气里。而且,这些射线的强度昼夜都是一样,因而它们不是从太阳而来的。当银河不在南半球的地平线上时,仍然有这些射线,因而它们的来源也不在我们的星系里,所以它们当是从银河系以外的天体或自由空间而来。
这些宇宙射线的能量可以根据其穿透力加以粗略估计。安德生(Carl
Anderson)与米利根首先做了比较精确的测量。他们使宇宙线通过很强的磁场,而观测其偏折。能量在6O亿(6×10[9])电子伏特左右相当确定的范围内变化。安德生于1932年利用这仪器发现具有阴电子质量的阳性粒子。这种阳电子,早由狄拉克据理论预言其存在。这种粒子后来被命名为正电子。读者当记得,以前已知的最小的阳性粒子是氢原子的核(质子),其质量约2000倍于电子。正电子的发现又使我们对于物质的概念发生根本性的改变。
和其他带电粒子一样,正电子穿过物质时产生电磁波。宇宙线的频率比X和Y射线为高,其范围在每秒1022至1024周,而可见光的频率只有1014周。这些频率不是直接测定的,而是将能量除以普兰克常数h而算出的。
1923年,康普顿根据量子论,提出可以和电子与质子相比拟的辐射单位的概念,他将这个单位命名为光子。如果一个光子以足够的能量打击一个原子核,特别是重原子核,一对正-负电子同时出现于云室里。这是1933年布莱克特(Blackett)与奥基亚利尼(Occhialini)首先提出,不久即为安德生所证实的。这类成对的电子的动能约为160万电子伏特,而入射光子的能量为260万电子伏特。这100万电子伏特的差数可以量度电子对的“固有能量”,是具有辐射能量的光子的物质化,这表现辐射转化为物质。反之,假设正负电子互相湮灭,就有两个电磁辐射的光子,每个的能量为50万电子伏特,从相反的两个方向射出。这个设想于1933年经提博(Thibaud)与约里奥(Joliot)由实验加以证实。
在海平面处已经发现具有三、四十亿(109)电子伏特的宇宙线。它们常以簇射(阵雨)的形式出现。在14,000尺高的尖峰山(Pike’sPeak),这现象尤其常见。根据贝特一海特勒(Bethe-Heitler)的簇射形成理论,一个入射高能电子先将其能量转化为“冲击光子”,这光子产生电子对,每个电子重演这一过程,直到所有的能量一律降低,成为低能的光子与电子。从地球外面来的正射线可能不会达到海平面,至于在云室里所观测到的高能正负射线,可能是在大气里形成的次级宇宙线。1934年,安德生与尼特迈耶尔(Neddermeyer)假设具有高度贯穿力的踪迹是质量在电子与质子之间的粒子的踪迹,这种粒子经安德生命名为“介子”。这两位物理学家于1938年证实了他们的假设,测量得这些粒子的质量为电子质量的220倍,1939年别的观测者又量得为200倍,而质子的质量约为2,000倍。由此可见,要说明物质的结构,需要一个多么复杂的图案!
在大多数的情形中,宇宙线里的粒子多是电子而很少质子。这表示宇宙线在进入太阳系以前不可能穿过很多物质;这样它们的来源好象不可能在银河系里的恒星上,而必须在银河系外的空间。
宇宙线的成因与来源仍然是一个只能猜度的谜。人们提出的假设有如下几种:(1)电子经过某一天空静电场降落而形成说,(2)经过双星磁场形成说,(3)按照爱因斯坦方程式mc2=E,物质质量一部或全部转化为宇宙辐射说。蕴藏量最丰富的元素可能释放的能量由110至280亿(1.1至2.8×1010)电子伏特,一半射向一方,另一半射向反对方向。所以一半所给出的能量在5至14×109电子伏特之间,观测所得的数值大致也是这样。