首页 >出版文学> 科学史及与哲学和宗教的关系(下)>第41章
图11表明汤姆生用来进行上述有历史意义的实验的仪器。一支高度抽空的玻璃管装着两个金属电极:阴极C和开有小缝的阳极A。从C发出的阴极射线的一部分,穿过小缝后,再为第二个小缝B所削细。这样得到的小束射线,经过绝缘片D与E之间,射在玻璃管他端的荧光幕或照相底片上。如将绝缘片连于高电压电池的两极,则其间产生电场。整个仪器放在一强力的电磁体两极中间,使得射线也受到磁场的作用。
假定阴极射线是荷有负电的质点的急流,由简单计算可以看出,射线的电场偏转度,亦如其磁场偏转度,是依质点的速度v及其电荷与质量之比e/m而改变的。所以通过测量电场与磁场的偏转度,便可求得v与e/m的数值。
汤姆生求得质点的速度在光速的十分之一左右,而略有变化,但其e/m则不管气体的压力与性质及电极的性质如何,均无改变。在液体电解质中,以氢离子的e/m为最大,约为10,000或104。汤姆生求得气体离子的e/m为7.7×106,换言之,即为液体中氢离子的e/m的770倍,而考夫曼在1897年12月所求得的更精密的数值为1.77×107。这些结果也许表明,在气体内的阴极射线的质点中,不是象舒斯特所预料的那样,电荷比在氢原子中大得多,就是质量小得多。汤姆生暂时假定这些质点比原子小。他以牛顿所常用的微粒那个名词去称呼它们,并且说它们是我们寻求多年的各种元素的共同成分。但是当时还没有明确的证据可以证明这些微粒所负的电荷,不比电解质中单价离子所负的更大,因而也无法计算其质量。所以电荷的疑案就成了急待研究的下一个问题了。
1898和1899年,汤姆生测量了X射线在气体中所造成的离子的电荷。他利用威尔逊(C.T.R.Wilson)在1897年所发现的方法,即离子和尘埃一样,可以成为潮湿空气中蒸汽凝成雾滴的核心。从这些雾滴在空气阻力下降落的速度,可以计算出雾滴的大小。从凝结的水的体积,可以求得雾滴的数目,再从已知电动势所产生的电流,可以求得电荷的总量。不久以后,汤森(Townsend)测量了离子渗入气体的扩散速度,而由此计算出离子的电荷。到了1899年,汤姆生用云室法与磁场偏转法,测量了相同一种质点(以紫外光射在锌片上所产生的质点)的电荷e和e/m。所有测量结果都证明:在实验误差限度以内,气体质点的电荷与液体单价离子的电荷相符合。事实上,在米利根(Millikan)新近的实验结果中,这两个数字相差不及四千分之一。
由此可见,并非微粒的电荷比液体中氢离子的电荷更大,而是其质量更小。这些微粒是原子的一部分,无论元素的性质如何,均为其原子共有的成分。从汤姆生最初的实验来看,每一微粒的质量似约为氢原子的1/770。但从上述考夫曼测量的e/m,已可求得较精密的结果。自此以后关于微粒的电荷与其e/m,接着又有新的测定,最着名的是米利根的测定。他在1910年改进威尔逊的云室法,又在1911年测量了小油滴在被电离的空气中降落的速度。当一油滴捉到一离子时,其速度便忽然改变。这样求得离子的电荷为4.775×10-10静电单位。这说明这些微粒或电子的质量,为氢原子的1/1830。从气体分子运动论可求得一个氢原子的质量约为1.66×10-24克,所以一个电子的质量约为9×10-28克。
这个伟大的发现终于解决了一个古希腊留下的问题:即不同的物质是否有共同的基础的问题。同时也阐明了“带电”的意义。汤姆生当时发表其个人的观点说:
我认为一个原子含有许多更小的个体;我把这些个体叫做微粒。这些微粒彼此相等;其质量等于低压下气体中阴离子的质量,约为3×10-28克。在正常原子中;这些微粒的集团,构成一个中性的电的体系。个别的微粒,行为虽然好象阴性的离子,但聚集于中性的原子中时,其阴电效应便为某种东西所抵消。此种东西使微粒散布的空间,好象有与这些微粒电荷之和相等的阳电似的。气体的带电现象,我认为是由于气体原子的分裂,致使微粒脱离某些原子。脱离出来的微粒,性质如阴性的离子,每个都荷有一值量的阴电,为简便计,我们名之为单位电荷。剩余的原子的另一部分,性质如一阳性的离子,载有一单位的正电荷,还有比阴电子更大的质量。由此观之,带电现象主要是由于原子的分裂,其中一部分质量被放出,而脱离了原来的原子。
这些新发展与前不久的一种研究,颇有关联之处。按照麦克斯韦的理论,光既然是一种电磁波系,那么光必定是由振荡的电体所发出的。由于光谱是元素所特有的而不是元素的化合物所特有的,所以这些振荡体(或称振子)必为原子或原子的一部分。依照这种推理,洛仑兹(Lorentz)在汤姆生的发现的前几年,创立了一种物质的电学说。这个学说预料,光谱的出现当受磁场的影响,而这一预料已为塞曼(Zeeman)所证实。塞曼在1896年发现光源放
在强磁场之内时,其所发纳光谱的谱线即行变宽。他后来又以更强的磁场将单一谱线分成了两条或多条。根据测量这些线条之间的距离所得的资料,按照洛仑兹的学说,可以算出振荡质点的电荷与其质量之比e/m的新值。如是求得此值的数量级为107电磁单位,根据更精密的测量算出,此数字为1.77×107,与根据观察阴极射线和他法所得的结果甚为符合。
洛仑兹利用斯托尼(J.Stoney)所定的名称“电子”来称呼这些振动的带电质点,而塞曼效应的发现与测量证明,它们就是汤姆生的微粒。我们可以把它们当做是孤立的阴电单位。拉摩(Larmor)以为电子既然有电能,就必定有与质量相当的惯量。这样,洛仑兹的学说就成为物质的电子学说,而且和由汤姆生发现而来的观点完全融合在一起。只不过汤姆生是用物质去解释电,而洛仓兹却是用电来解释物质。
应该指出,当时还有一个默认的假设并没有为后来的研究所证实。这一假设认为,原子中的微粒或电子是按照牛顿的动力学运动的,在最初的时候,人们甚至把原子比做一个小型的太阳系,电子在其中的运动有如行星之绕太阳。但在1930年以前,我们明白这种行星轨道的概念,并不一定符合事实,因而应该放弃。
接着人们便发现还可以用许多别的方法获得微粒或电子:例如高温下的物质及受到紫外光作用的金属,都能发出电子。这些效应由勒纳德(Lenard)、埃尔斯特(Elster)和盖特尔(Geitel)、理查森(O.W.Richardson)、拉登堡(Ladenburg)等人加以研究,此后这种热效应在无线电报与电话所用的热离子管中就取得了重要的实用意义。