因果原理,象通常所构写的那样,申言每一个事件都是某个原因的结果。原因与结果这两个概念的内容不可能严格地转述出来,因为自然事件是不能被孤立起来的。因此,“原因为
与“结果”这两个词汇根本不出现在自然律中,我们有的只是用数学函数表达的事件间的相互
联系。每一事件均被解释为状态的变化;每一状态均由某些量值表明其特征,而每一自然律则
陈述这些量值的各种变化之间的关系,正是这些量值的变化描述了各种各样的事件。在可能的场合下,量值的变化都被假定为无限小,此时自然律就表述成微分方程的形式。
由于微分定律是不能直接证实的微观定律,在判断这一认识方法的价值时我们必须谨慎。
虽然如此,这种认识方法却符合于下列的经验事实,即一切观察到的结果都是连接的结果,也
就是说,每当可以表明一个事件依赖于相隔一定时空距离的另一事件时,在这两个事件之间就
总是有另外一些也依赖于它们的事件存在,而且其存在的方式是较大的时间间隔对应于较大的
空间距离。这样,经典物理学中典型的自然律是这样的一种公式,它以某一点上事件对于其紧
邻事件的依赖关系来表示该事件,此即“场方程”。(“场”指的是一个空间区域,它的每一
个点上的状态完全由某些量的值所决定。)在场物理学中,力图用这些量来描述所有的事件并
从而也仅仅用场方程来表述例如原子及电子的过程。最着名的场方程是麦克斯韦为电磁过程所构写的。
但它们肯定不是对于任意小的区域都为真。涡环原子论也属于场物理学的一种类型。从这一观点出发,因果原理显得很容易在自然的四维描述中表达。它似乎断言四维柱体的
内部完全由时间方向上任意薄的任一截面及柱面(边界条件)二者所决定。也可以说,由两个
纯粹空间的截面及表面所完全决定。由此,虽然作为前面描述过的时空流形结构的结果,类时
方向具有优先的作用,但过去一将来方向较之将来一过去方向并没有更为可取的地方。这样,
我们无论说过去决定将来还是说将来决定过去都是完全一样的。但是“决定”这个词的意思是
什么?因果原理和决定论这二者的意义正好都取决于这一点。一事件为另一事件因果地决定,
这无疑是这两事件之间一种真实的联系;但这仅仅意味着在这两者之间总是能发现另一些有依
赖性的事件。虽然如此,我们一定得同意休漠的主张,即在两事件间寻找因果链或某种粘合剂是毫无意义的。
研究因果性是否存在的这种探索只能被解释为是探索自然律是否存在。因果原理本身并不
是定律,它只表述了定律存在这一事实。但是,无论我是只陈述一条自然律,还是在该陈述之外再加一短语说“这条自然律是存在的”,我这两种说法并没有任何差别。
因此,只要我们想把因果律构写成定津是存在的这一陈述,我们便会遇到逻辑上的困难。“事件的发生与定律一致”似乎意味着那种借助于四维柱体使我们能从一个已知的特定截
面计算其余截面的公式是存在的。但是事件的四维表示一旦给出,就总是可以找到能完成这一
任务的公式。因此,如果定律无非是意味着利用函数表示的可能性,那么凡是可设想的自然事
件就都会按照定律而发生;这样,断言自然的规则性或合律性的因果原理就成了一种空洞的同
义反复。为了给这一原理以内容,通常试图对函数加上一些限制条件:或是要求函数简单,或是规定函数中不应显含时一空坐标。这后一判据曾被麦克斯韦用在他对因果性的定义中。它
与“同因生同果”这句话是等同的。因为它说的是一个自然过程总是有相同的结果而不受其发
生的时间地点的影响。实际上,这两个判据在每一条自然津中都得到满足(虽然“简单性”是
一个极其含糊的概念;因此,要用作规则性或合律性的定义,在实践上它们可以被认为是充分的。
虽然如此,这种情况在逻辑上是不能令人满意的,因为还是可以设想尽管这两个判据都不
满足而事件却仍被认为是因果地决定的情况。例如,只要人们掌握的公式总是对事件给出正确
的预言,不管这些公式是怎么起作用的,人们都会认为事件是因果地被决定的。事实上,预言
的应验永远是因果性存在的决定性判据,但是,这具有纯粹实践的性质,并从而不适用于因果原理的逻辑构述。
经典物理学是决定论的。而按照决定论,未来可以完全由现在加以预言。在有关未来的命
题方面,决定论同矛盾律之为真毫不相干——就象亚里士多德以及还有现代的逻辑学家们所相
信的那样①。按照矛盾律,一切关于未来的命题不是真就是假。按照决定论,其真假可以从关于现在的命题中演绎出来——这可完全是另外一回事了。①
此处,石里克作为一个例子无疑暗指鲁卡西维茨的着作——《论有关亚里大多德的矛盾律》,载《克拉科夫科学院通报》,1909年。
第13章 经典物理学中的因果原理