当错误在第二格产生时,两个前提完全虚假是不可能的(因为如我们以前说过的,当B从属于A时,没有事物能属于一者的全体而不属于另一者的任何部分),但其中一个前提可以是虚假的,任意哪个都行。如果C既属于A也属于B,如果它被设定属于A却不属于B,那么前提CA就是真实的,而另一个是虚假的。再者,如果C被设定属于B却不属于A,那么CB是真的,而另一个是虚假的。
这样,我们就说明了如果错误的推论是否定的,那么什么时候以及从什么样的前提中错误会产生。如果它是肯定的,那么,(1)当它通过恰当的中词而推得时,两个前提都假是不可能的,因为如我们在上文已说过的,如果有三段论,那么前提CB必定是静止不变的,因而AC始终是假的,因为它是(性质)要被转换的前提。(2)如我们在涉及否定性的错误时所说的,设定中词取自另一个谓项系列,那么情况亦相同。因为DB必定是静止不变的。
AD在性质上可以转换,这错误与以前的相同。但是,(3)当结论不是通过恰当的中词推得,如果D
从属于A,那么这个前提是真实的,而另一个是虚假的。因为A可以属于多个互相间不从属的词项,但是如果D
不从属于A,那么很显然这个前提始终是虚假的(因为它被设定为是肯定的),反之,DB可以是真的或假的。没有什么阻止A不属于任何D而D
属于所有B(例如,动物不属于任何科学,但科学却属于一切音乐),也没有什么阻止A不属于任何D,D不属于任何B。(这就很明白,当中词不从属于A时,两个前提都可以是假的,并且其中任意一个都可以是假的。)这样,三段论的错误可以以多少种方式,以什么样的前提出现在直接属性以及证明属性中,就十分清楚了。
同样明白的是,如果感觉功能丧失了,那么某些知识必定随同它而丧失,因为我们的学习要么通过归纳,要么通过证明来进行。证明从普遍出发)归纳从特殊开始,但除非通过归纳,否则要认识普遍是不可能的(甚至我们称作“抽象”的东西,也只有通过归纳才能把握,因为尽管它们能分离存在,它们有一些也居于某类对象之中,仅就每类对象都有一种特殊性质而言)。如果我们缺少感觉,我们就不能适用归纳。因为感觉才认识特殊,由于它们既不能通过缺乏归纳的普遍,也不可能通过没有感觉的归纳得到认识,所以对它们不可能获得知识。
每个三段论都由三个词构成,有一种形式能证明A属于C,因为A属于B,B属于C,另一种形式是否定的,其中一个前提是肯定的,而另一个前提却是否定的。很显然,这些是(三段论的)本原和所谓的假设,通过以这种方式设定它们,一个人必须证明,例如,A由于B而属于C,又,A由于另一个作为中词的词项而属于B,B亦以同样方式属于C,现在如果我们只是以一种辩证的观点来争论,那么,很显然,我们只需要考虑结论是否推自最广泛被接受的前提。所以,尽管一个给定的词项并不真是A和B的中词,但只要它被普遍接受,我们据此推论,那么推论在辩证法的意义上是完满的,但如果我们的对象是真实的,我们就必须从事实出发进行研究。观点就是这样,有些词项在不是偶然的意义作其他事物的谓项(我所谓“偶然地”是指,譬如,有时我们说“那个白的东西是个人”,它跟说“那个人是白的”是不一样的,人不是白的东西,因为他是其他某个东西,而白的东西是人,因为它是白的人的偶性),有些事物在本性上就是可以作谓项的。让C不再能属于其他任何词项,但B
却直接属于C,没有其他词项居于它们之间。又,让E以同样的方式属于F,F属于B,那么这个系列有必定的界限吗?或者说,它可以进展到无穷吗?又,如果没有词项自身可作为A的谓项,而A直接属于H,不直接属于任何中间项,H属于G,G属于B,那么,这一系列也必然有个终端,还是它也可以进展到无穷呢?它与前一个问题不同。它问的是,“如果我们从这样一个词项——它不从属于其他事物而其他事物却从属于它——开始,是否可能按上升方向进展到无穷?”前一个问题问的是:如果我们从这样一个词项——它自身可作为其他事物的谓项,但没有什么能作为它的谓项——开始,我们能否按下降方面进展到无穷。进而,当终端确定时,居间的词项在数目上能无限吗?我的意思是说,例如,如果A属于C,B是它们的中词,其他词项可作为B和A的谓项,另外词项又可以作为这些词项的谓项,那么它们能进展到无穷吗?还是不可能?探索这个问题与探索证明是否构成一个无穷系列是一样的,也就是说,万物是否都可证明或终极在互相联系中是有限的。否定的三段论与前提也有同样情况,例如,如果A不属于任何B,那么它要么是直接的,要么存在着某个它不直接属于的居间的词项(例如它不直接属于G,但G却属于任何B)。再者,某个词项先于G,例如,H,A不属于它,可它却属于一切G。在这种情况下,要么A更直接所属的词项在数目上是无限的,要么系列有一个界限。
但是,如果前提是可以换位的,情况则不同。在词项可以互作谓项的情况下,没有一个词项是最初的或最终的谓项,因为在这一方面,一切都同样处在互相联系之中,无论可作为述说主项的词项在数目上无限,还是两类词项(我们对它们都不确定)都在数目上无限,唯一的例外是,如果词项不能按同样方式换位,而是一个是偶然的,另一个则是真正的谓项。
第69章