在同一门科学中,对事物的知识和对事物原因的知识在下列不同的条件下是不同的:(1)如果结论不是从直接的前提推得(因为这样一来,第一因(近因)不包含在它们之中,而对原因的知识是依赖第一因的)。(2)虽然结论是从直接前提推得,但它却不是从原因而是从两个可转换的词项中知道得更清楚的那个词项中推得。因为在两个可以转换的谓项中,不是原因的那一个可能知道得更清楚,所以证明将从此而进展。例如,“行星是相近的,因为它们不闪烁”这样一个证明。让C表示“行星”,B表示“不闪烁”,A表示“相近”,那么,B作为C的谓项是真实的,因为行星不闪烁,但A陈述B同样是真的,因为不闪烁的东西是接近的(这已经通过归纳或感官知觉而确定),这样,A必定属于C,从而证明了行星是相近的。因此这个三段论证明的不是原因而是事实。因为不是因为行星不闪烁,所以它们相近,而是因为它们相近,所以不闪烁。不过,借助大词证明中词是可能的,所以证明可以揭示根据。例如,让C表示“行星”,B表示“相近”,A表示“不闪烁”,那么B属于C,并且A属于B,所以A也属于C。这个三段论揭示了根据,因为第一因已被断定了。再如,月亮由于它的盈亏被证明是球形的,如果展现出这类盈亏的事物是球形,月亮展现了这类盈亏,那么月亮很显然是球形的。三段论用这种形式证明事实,但当中词与大词互换时,我们就揭示了根据,因为月亮不是由于它的盈亏所以是球体,而是因为它是球体所以呈现出这种盈亏。C表示“月亮”,B表示“球形”,A表示“盈亏”。(3)如果中词不能转换,不是原因的东西比原因更被了解,那么事实能被证明而根据却不能被证明。(4)中词与大词和小词不相交的三段论亦同样情况。在这些三段论中,证明说明了事实却没有说明根据。因为原因没有得到陈述。例如,墙为什么不呼吸?因为它不是动物,如果这是不呼吸的原因,“是动物”就应当是呼吸的原因。如果一个否定陈述给出一个属性所不属于的原因,那么,相应的肯定陈述就会给出其属于的原因。如果我们身体的热和冷的元素失调是我们不健康的原因,那么,它们的适当比例就是我们健康的原因。同样,如果肯定陈述给出了一个属性所属于的原因,那么否定陈述就会给出它不属于的原因。但在给予的例证中,结论并不跟随,因为并非一切动物都呼吸,证明这类原因的三段论出现在中间格中。例如,让A表示“动物”,B表示“呼吸”,C表示“墙”,那么,A属于所有B(因为凡是呼吸者皆为动物)但不适用于C,这样,B也不属于任何C,因而墙不能呼吸。这样的原因就象是牵强附会的解释,我的意思是指用太遥远的一种形式去陈述中词,例如,阿那赫里西斯的格言,即在斯库塞人中没有吹笛手,因为没有葡萄树。
在同一门科学中,根据中词的位置,证明事实的三段论与证明根据的三段论的差异就是这样。但事实和根据还在另一方面互不相同,即在每个为不同科学所研究的存在上。所有互相联系,一门从属于另一门的学科都是这样。正如光学问题从属于几何,力学问题从属于立体几何,和声问题从属于算术,自然现象研究从属于天文学这样的联系一样。在这些学科中有些实际上是同名的,例如,数学和航海天文学都被叫做天文学,数学和声学和谐都被叫做和谐。在这些学科中,收集资料者知道事实。数学家揭示根据,后者能证明原因,但他们却常常忽视事实。正如研究普遍的人由于缺少完全的考察常常忽略某些特殊事例一样。一切分离存在的、呈现出特殊形式的对象都属于这一类。数学是研究形式的,它们并不把它们的证明局限在特殊的主体上。即使几何学涉及特殊的主体,它们也仅仅是偶然的。正如光学与几何学相关一样,另一门科学即对虹的研究与光学联系。知道虹存在这一事实是制然哲学家的任务,认识其根据是光学家一一或者是纯粹的光学家或者是数学上的光学家一一的任务。许多并不严格从属于其他科学的科学也具有这种联系,如医学与几何学,医生知道周期性的伤治愈较慢这一事实,但几何学家知道该事实的根据。
在所有的格中,最科学的格是第一格。不仅数理科学,如算术、几何及光学通过它推进它们的证明,而且,广而言之,所有探讨根据的科学实际上都通过这一格推进自己的证明。一般来说,在绝大多数情况下,探索根据的三段论都受这个格的影响。由于这个缘故,第一格也可以被认为是最科学的,因为知识的最重要的部分就是对根据的研究。进一步,仅用这个格也能追求“是什么”的知识。因为在中间格中我们得不到肯定的结论。而对事物的“是什么”的知识必定是肯定的。在最后格中我们可以得到肯定的结论,但它不是全称的,而“是什么”却属于全称的范畴。“人是两足动物”并不是在任何特殊意义上而言的。最后,第一格独立于其他格,而其他格则为它所补充和增加,直到它们获得直接前提为止,十分显然,第一格对于知识来说是最关键的。
正如A可以不可分割地属于B一样,它也可以不可分割地不属于B。我的意思是,在不可分割地属于与不属于之间没有中词。在这种情况下,属于或不属于就不再依赖其他词项。当A或B或两者被包含在某个整体中时,A就不可能在首要的意义上不属于B。让A被包含在C的整体中,如果B不被包含在C的整体中(A被包含在某个整体中,而B却不被包含在其中,这是完全可能的),那么就会有三段论证明A不属于B。如果C属于A的所有部分却不属于B的任何部分,那么A就不属于B。如果B被包含在某个整体中,譬如说,D中,则情况亦相同。因为D属于B的所有部分,所以A不属于D的任何部分,因而通过三段论表明,A不属于B的任何部分。如果两者都被包含在同一个整体中,那么证明将会采取同样的形式。
第67章