首页 >出版文学> 狭义与广义相对论浅说>第16章 广义相对性原理3

第16章 广义相对性原理3

设我们从一点向所有各个方向画线或拉绳索,并用一根量杆在每根线或绳索上量取距离r。这些具有长度r的线或绳索的所有的自由端点都位于一个球面上。我们能够借助于一个用量杆构成的正方形用特别方法把这个曲面的面积(F)测量出来,如果这个宇宙是欧几里得宇宙,则
;如果这个宇宙是球面宇宙,那么F就总是小于4πr2。随着r的值的增大,F从零增大到一个最大值,这个最大值是由“世界半径”来确定的,但随着r的值的进一步增大,这个面积就会逐渐缩小以至于零。起初,从始点辐射出去的直线彼此散开而且相距越来越远,但后来又相互趋近,最后它们终于在与始点相对立的“对立点”上再次相会。在这种情况下它们穿越了整个球面空间。不难看出,这个三维球面空间与二维球面十分相似。这个球面空间是有限的(亦即体积是有限的),同时又是无界的。
可以提一下,还有另一种弯曲空间:“椭圆空间”。可以把“椭圆空间”看作这样的弯曲空间,即在这个空间中两个“对立点”是等样的(不可辨别的)。因此,在某种程度上可以把椭圆宇宙当作一个具有中心对称的弯曲宇宙。
由以上所述可以推知,无界的闭合空间是可以想象的。在这类空间中,球面空间(以及椭圆空间)在其简单性方面胜过其他空间,因为其上所有的点都是等效的。由于这个讨论的结果,对天文学家和物理学家提出了一个非常有趣的问题:我们居住的宇宙是无限的,抑或象球口宇宙那样是有限的呢?我们的经验远远不足以使我们能够回答这个问题,但是广义相对论使我们能够以一定程度的确实性回答应个问题;这样,第30节所提到的困难就得到了解决。
以广义相对论为依据的空间结构根据广义相对沦,空间的几何性质并不是独立的;确是由物质决定的,因此,我们只有已知物质的状态并以此为依据进行考虑才能对宇宙的几何结构作出论断。根据经验我们知道,对于一个适当选定的坐标系而言,诸星的速度比起光的传播速度来是相当小的。因此,如果我们将物质看作是静止的,我们就能够在粗略的近似程度上得出一个关于整个宇宙的性质的结论。
从我们前面的讨论已经知道,量杆和钟的行为受引力场的影响,亦即受物质分布的影响。这一点本身就足以排除欧几里得几何学在我们的宇宙中严格有效的这种可能性,但是可以想象,我们的字宵与一个欧几里得宇宙仅有微小的差别,而且由于计算表明,甚至象我们的太阳那样大的质量对于周围的空间的度规的影响也是极其微小的,因而上述看法就显得越发可靠。我们可以设想,就几何学而论,我们的宇宙的性质与这样的一个曲面相似,这个曲面在它的各个个别部分上是下规则地弯曲的,但整个曲面没有什么地方与一个平面有显著的差别,就象是一个有细微波坟的湖面,这样的字宙可以恰当地称为椎欧几里得宇宙。就其空间衍育,这个宇宙是无限的。但是计算表明,在一个准欧凡里得宇宙中物质的平均密度必然要等于零。因此这样的宇宙不可能处处有物质存在;呈现在我们面前的将是我们在第30节中所描绘的那种不能令人满意的景象。
如果在这个宇宙中我们有一个不等于零的物质平均密度,那么,不论这个密度与零相差多么小,这个宇宙就不可能是是准欧几里得的。相反,计算的结果表明,如果物质是均匀分布的,宇宙就必然是球形的(或椭圆的)。由于实际上物质的细微分布不是均匀的,因面实在的宇宙在其各个个别部分上会与球形有出入,亦即宇宙将是准球形的。但是这个宇宙必然是有限的。实际上这个理论向我们提供了宇宙的空间文度与宇宙的物质平均密度之间的简单关系。
附录一、洛伦兹变换的简单推导[补充第11节]
按照图2所示两坐标系的相对取向,该两坐标系的x轴永远是重合的。在这个情况下我们可以把问题分为几部分,首先只考虑x轴发生的事件。任何一个这样的事件,对于坐标系K是由横坐标x和时间t来表示,对于坐标系K’则由横坐x‘和时间t’来表示。当给定x和t时,我们要求出x‘和t’。
沿着正x轴前进的一个光信号按照方程或ctx=(1)
0=?ctx传播。由于同一光信号必须以速度c相对于K‘传播,因此相对于坐标系K’的传播将由类似的公式0=′?′tcx
(2)表示。满足(1)的那些空时点(事件)必须也满足(2),显然这一点是成立的,只要关系()(ctxtcx?)=′?′λ
(3)一般满足,其中λ表示一个常数;因为,按照(3),(ctx?)等于零时(tcx′?′)就必然也等于零。
如果我们对尚着负x轴传播的光线应用完全相同的考虑,我们就得到条件()(ctxtcx+)=′+′μ
(4)方程(3)和(4)相加(或相减),并为方便起见引入常数a和b代换常数λ和μ,令2μλ+=a以及
2μλ?=b我们得到方程????=′?=′bxacttcbctaxx(5)因此若常数a和b为已知,我们就得到我们的问题的解。a和b可由下述讨论确定。
以于K‘的原点我们永远有x'=0,因此按照(5)的第一个方程tabcx=如果我们将K’的原点相对于K的运动的速度称为v,我们就有abcv=
(6)同一量值v可以从议程(5)得出,只要我们计算K‘的另一点相对于K的速度,或者计算K的一点相对于K’的速度(指向负x轴)。总之,我们可以指定v为两坐标系的相对速度。
还有,相对性原理告诉我们,由K判断的相对于K‘保持静止的单位量杆的长度,必须恰好等于由K’判断的相对于K保持静止的单位量杆的长度。为了看一看由K观察x‘轴上的诸点是什么样子,我们只需要从K对K’拍个“快照”;这意味着我们必须引入t(K的时间)的一个特别的值,例如t=0,对于这个t的值,我们从(5)的第一个方程就得到axx=′因此,如果在K‘坐标系中测量,x’轴上两点相隔的距离为1=Δx,该两点在我们的瞬时快照中相隔的距离就是
ax1=Δ(7)但是如果从K‘(t'=0)拍取快照,而且如果我们从方程(5)消去t考虑到表示式(6),我们得到xcvax??
?
??????=′221由此我们推断,在x轴上相隔距离1(相对于K)的两点,在我们的快照上将由距离?????????=′Δ221cvax(7a)表示。
但是根据以上所述,这两个快照必须是全等的;因此(7)中的必须等于(7a)中的,这样我们就得到xΔx′Δ22211cv?=a
(7b)方程(6)和(7b)决定常数a和b。在(5)中代入这两个常数的值,我们得到第11节所提出的第一个和第四个议程:
?????????????=′??=′2222211cvxcvttcvvtxx
(8)这样我们就得到了对于在x轴上的洛伦兹变换。它满足条件222222tcxtcx?=′?′
(8a)再把这个结果加以推广,以便将发生在x轴外面的事件也包括进去。此项推广只要保留方程(8)并补充以关系式(9)???=′=′zzyy就能得到。
这样,无论对于坐标系K或是对于坐标系K’,我们都满足了任意方向的光线在真空中速度不变的公设。这一点可以证明如下。
设在时间t=0时从K的原点发出一个光信号。这个光信号将按照议程ctzyx=++=222r传播,或者,如果方程两边取平方,按照方程022222=?++tczyx
(10)传播。
光的传播定律结合着相对性公设要求所考虑的信号(从K‘去判断)应用按照对应的公式或rtc′=′022222=′?′+′+′tczyx
(10a)传播为了使方程(10a)可以从方程(10)推出,我们必须有()2222222222tczyxatczyx?++=′?′+′+′
(11)由于方程(8a)对于x轴上的点必须成立,因此我们有1=σ,不难看出,对于1=σ,洛伦兹变换确实满足(11);因为(11)可以由(8a)和(9)推出,因而也可以由(8)和(9)推出。这样我们就导出了洛伦兹变换。
由(8)和(9)表示的洛伦兹变换仍需加以推广。显然,在选择K’的轴时是否要使之与K的轴在空间中相互平行是无关重要的。同时,K‘相对于K的平动速度是否沿x轴的方向也是无关紧要的。通过简单的考虑可以证明,我们能够通过两种变换建立这种广义的洛伦兹变换,这两种变换就是狭义的洛伦兹变换和纯粹的空间变换,纯粹的空间变换相当于用一个坐标轴指向其他方向的新的直角坐标系代换原有的直角坐标系。
我们可以用数学方法,对推广了的洛伦庇变换的特性作如下的描述:
推文了的洛伦兹变换就是用x,y,z,t的线性齐次函数来表示x’,y‘,z’,t‘,而这种线性齐次函数的性质又必须能使关系式2222222222tczyxtczyx?++=′?′+′+′
(11a)恒等地被满足。也就是说:如果我们用这些x,y,z,t的线性齐次函数来代换在(11a)左连所列的x’,y‘,z’,t‘,则(11a)的左边与其右边完全一致。